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FOREWORD
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COMPENDIUM OF FRACTORGRAPHIC DATA FOR COMPOSITE MATERIALS

INTERIM REPORT

1.0 INTRODUCTION

The increasing use of advanced composite materials by the aerospace industry has
created a need to reassess failure analysis methods originally developed for metals. New
technology necessitates corresponding advances in composite failure analysis. Failures
in composites may resuit from design errors, material and process discrepancies, or
anomalous service conditions. New methods of identifying and understanding the causes,
mechanisms, and circumstances of composite material failures wiil lead to corrective

actions and design improvements.

1.1 PROGRAM OBJECTIVES
The primary objectives of this program, entitled "Composite Failure Analysis

Handbook" (CFAH), USAF Contract F33615-86-C-5071, was to develop a guideline for

the analysis of aerospace composite structural component failures. This guide is

intended to be a one-of-a-kind failure analysis handbook encompassing methodeciogy and

data necessary for composite structure failure investigation. An expansion of the

"Compendium of Post-Failure Analysis for Composite Structure”" developed under Air

Force Contract F33615-84-C~5010, the CFAH program began on 22 Septamber 1286 and

the technical effort reported herein was compieted on 31 Qetober 1983. Secondary

objectives for developing this portion of the handbook were:

a. Development of guidelines for fieid investigation personnel on handling debris and
gathering data at erash sites to supplement laboratory analysis.

b. Expansion of analytical techniques, particularly mierecscopie and maeroseopie
fractography.

c. Expansion of the fractographic database for the Hercules AS4/3501-6 system and
other materials likely to be encountered in the 1990's.

d. Production of a valuable instruction document in which analytical methods,
supporting data, and documented case histories will be presented in a concise and
easily used format.
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1.2 PROGRAM APPROACH

The overall program approach is shown in Figure 1.2-1. Boeing and General Electric
(GE) expertise and supporting scientific literature were used to identify, evaluate,
summarize, and demonstrate necessary procedures and techniques for composite failure
analysis. Figure 1.2-1 shows six of the eight tasks:

Task 1: Handling and Data Gathering Techniques for Field Representatives.

Task 2: Expansion of Fractographic Techniques in Composite Failure Analysis.

Task 3: Expansion of the Fractographic Database.

Task 4: Development of Data Formats.

Task 5: Documentation of Material Properties.

Task 6: Verification of Composite Failure Analysis System.

Task 7, Administrative Management, and Task 8, Meetings, proceeded smoothly and
were reported as appropriate in previous reports.

Tasks 1 through 6 were accomplished by objectively reviewing known information in
the technical area, selectively evaluating the speculative information through either
proven controlled tests or direct application during the program, gaining an
understanding of the scientific fundamentals related to each task, and verifying and
demonstrating the information gathered. This i-eport provides the pertinent data and
techniques for incorporation into the handbook.

The final handbook will be jointly sponsored by the Air Force and the Federal
Aviation Administration (FAA) and compiled by Boeing Advanced Systems, Seattle,
Washington, and Northrop Corporation, Hawthorne, California. The tentative outline of

the handbook is shown in Figure 1.2-2. o
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1.0 INTRODUCTION AND PURPOSE

2.0 FUNDAMENTAL SOURCES OF FAILURES

2.1 DesignErrors

2.2 Materials and Process Discrepancies
2.3 Anomalous Service Conditions

2.4 Examples

3.0 FAILURE MODES AND FRACTURE MECHANICS

3.1 interlaminar Fractures
3.1.1 Mode 1 Tension
3.1.2 Mode 2 Shear
3.1.3 Mixed Mode
3.1.4 Fatigue

3.2 Translaminar Fractures
3.2.1 Mode 1 Tension
3.2.2 Mode t Compression
3.2.3 Flexural
3.2.4 Compression-Buckling

3.3 Fractuyre Mechanics
3.3.1 Fracture Toughness
3.3.2 Notch Sensitivity
3.3.3 Rate Sensitivity
3.3.4 Fatigue

40 ANALYTICAL PROCEDURES AND TECHNIQUES

4.1 Overall Approach to Failure Analysis of
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4.1.1 Overall FALN
4.2 Field Investigation Guidelines
4.2.1 Field Investigation FALN-Overview of
Approach
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and Methods
4.2.2.1 Organization and Planning
® Investigator's equipment
® Specialist examinations
4.2.2.2 Initial On Site Action-Evidence
Preservation
® General
Protective and corrective measures
Proper handling of failed
components
® Environmental effects on failure
surfaces
® Photomacrography
4.2.2.3 Structures Investigation-
Macroscopic
® Types and modes of material
failure
® Recognition of failure types
e Determination of failure sequence
e Selection of specimens far
laboratory analysis
4.2.2.4 Specimen Gathering Techniques
® Cutting techniques
o C(leaning of fracture surfaces
® Packaging for shipment
4225 Safety and Health
® OQverview
® Equipment
4.3 Nondestructive Evaluation (NOE)
4.3.1 NOE FALN-Overview of Approach
4.3.2 NDE Techniques-Overview Methods
4 3.3 Ultrasonic Methods
434 X-RayRadiography
43S Penetrantinspection
4.3.6 Specialized NDE Techniques

44

4.3.7 Examples of NDE Methods Used in
Failure Analysis
Materials Characterization
4.4.1 Materials Characterization FALN-
Overview of Approach
4.4.2 Materials Characterization Technmques-
Overview of Methods
4.4.3 Matenal Layup Analysis (Ply Count and
Orientation)
® Optical microscopy
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® Other techniques
4.4.4 Material identification
4.4.4.1 Uncured Material ident:ification
e High pressure liquid
chromatography (HPLC)
e Infrared spectroscopy (IR}
e Differential scanning
calorimetry (DSC)
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o Other techniques
4.4.4.2 Cured Matenal Identification
® Pyrolysis-gas
chromatography (PGC)
® Pyrolysis gas chromatography
mass spectroscopy (PGC/MS)
® Infrared spectroscopy (IR)
® X-Ray fluorescence (XRF)
e Other techniques
4.4.5 Degree of Cure Analysis
4.45.1 Glass Transition Temperature
{TG) Analysis
® Thermomechanical analysis (TMA)
o Differential scanning calorimetry
(DSC)
® Dynamic mechanical analysis
(DMmA)
e Other techniques
4.45.2 Extentof Unreacted Material
o Differential scanning calorimetry
(DSC)
& Dynamic mechanical analysis
(OMA)
e infrared spectroscopy (IR)
® Solvent extraction
4.4.6 Cured Material Contamination Analysis
4.46.1 Surface Chemical Contamination
® Optical microscopy
® Scanning electron microscopy and
electron microprobe analysis
® X-Ray photoelectron spectroscopy
{XPS)
® Ayger electron spectroscopy (AES)
® Secondary 10n mass spectroscopy
{SIMS) and related ion beam
method
4.46.2 Foreign Object inclusion
® Visual
e Optical microscopy
® Scanning electron microscopy
and electron microprobe
analysis
® Radiography
e Ultrasonic imaging and defect
resolution
4.4.7 Environmental Effects on Matenal
Charactenzation Evaluations
4.48 Use of Materials Characterization
Methods and Examples in Failure Analysis

{(10f2)

Figure 1.2-2. Prefiminary Qutline for Composite Failure Analysis Handbook
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4.5 Fractography of Composite Materials
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4.5.3.8 Photographic Reporting
Considerations
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Transmission Electron Replica
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® Environment (temperature and
moisture)

e Limitations and artifacts in
transmission electron replica
fractographs

4.5.7 Comparison of the Various Microscopy

Techniques for Determining Fracture

Mode, Crack Propagation Characteristics,

and the Infiuence of Environmental

Variables
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Approach
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of Methods
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7.0 ATLAS OF FRACTOGRAPHS
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e Other
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vann an
NN D

Figure 1.2-2. Preliminary Outline for Composite Failure Analysis Handbook (Concluded)
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2.0 TASK 1: HANDLING AND DATA GATHERING TECHNIQUES
FOR FIELD REPRESENTATIVES

2.1 OBJECTIVE

The goal of Task 1 was to develop a sub-failure analysis
logic network (sub-FALN). The sub-FALN provides specific
guidelines for field investigation of composite component
failure.

2.2 APPROACH

The approach to Task 1 was to first compile existing
government and industry field investigation guidelines generic
to both metal and composite components. The sub-FALN was then
developed based on review and comment by field representatives
and the guidelines were revised for incorporation into the
handbook. This approach ensured compatibility and continuity
with current accident field investigation guidelines. This
was a low cost approach, since many of the industry field
investigation guidelines have already been developed. Figure
2.2-1 illustrates the flow diagram for this task.

2.3 METHODS

In order to develop the sub-FALN, three subtasks were
identified: (1) literature search and review, (2)
consultation with experts, and (3) test matrix development and
performance.

2.3.1 Literature Search and Review

A literature search for handling and data
gathering techniques for field representatives was conducted
using the following references:

a. Manual of Aircraft Accident Investigation,
International Civil Aviation Organization (ICAQ), Montreal,
Quebec, Canada, Deoccument No. 6920-AN/855/4, 4th edition, 1970.

b. Technical Manual: USAF Material Deficiency
Reporting and Investigating System. Document No. TO 00-35D-
54(C8), 1 September 1986,

c. AFR 127-4(C2): Investigating and Reporting
U.S. Air Force Mishaps, 29 November 1985.
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Figure 2.2-1. Task 1 Flow Diagram
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2.3.2 Consultation With Experts

After an initial review of existing field procedures and guidelines for both metallic
and composite structure, a panel of experts was consulted to confirm and refine concerns
to be addressed. The panel consisted of Joseph Tilson, USAF flight safety engineer;
Rick Davis, Air Force accident investigation instructor at the University of Southern
California; Burton Chesterfield, division manager for the Aircraft Aviation Safety
Institute, Department of Transportation; Jim Wildey, National Transportation Safety
Board Accident Investigation, Washington, D.C.; and Thurmon Jones, Boeing accident

investigator.

2.3.3 Test Matrix Development and Performance

Based on the areas of interest identified, literature regarding specific procedures
and analytical methods was surveyed. In areas where no data or literature existed,
laboratory tests were performed. The test matrix shown in Figure 2.3-1 was aimed at
identifying environmental effects, corrective action techniques, protective methods, and
cutting effects (each as related to the preservation of physical evidence). AS4/3501-6
carbon/epoxy was used in the analysis.

Initially, 3/4-inch square specimens were cut from both double cantilever beam
(DCB) and end-notched flexure (ENF) specimens. DCB and ENF specimens simulate
interlaminar Mode I tension and interlaminar Mode II shear respectively; for full
description, see Section 4.3.3. Optical microscopy was performed to confirm that the
control fracture features were present prior to the test exposure. Once fractographic
features such as rivermarks and hackles were identified, the specimens were exposed to
test conditions. Finally, the specimens were analyzed by scanning electron microscopy
(SEM) and photomicrographs were taken for documentation.

Environmental Effects. The primary objective of this portion of the test matrix was
to evaluate environmental effects on fracture surfaces. Jet fuel, hydraulic fluid, and
fire retardant foam can come into contact with fracture surfaces. To test whether such
contact could alter fracture surfaces, test specimens were soaked in beakers containing
contaminant solutions for 30 minutes. In addition, a specimen was soaked in fire
retardant foam for 24 hours, per Air Force request. The jet fuel used was JP-4, the
hydraulic fluid was Skydrol, and the fire retardant was Aqueous Film Forming Foam
(AFFF). The main chemical ingredients of AFFF are water (76%), diethylene glycol
monobutyl ether (15%), urea (4%), fluoroalkyl surfactants and synthetic detergents
(<5%).

D180-31996-1
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Condition Test specimen type Comments
Environment Mode | DCB Mode IlENF | ® Environment applied after fracture
o Jetfuel (JP-4) ® SEM examination
® Hydraulic fluid ® Examined in Task 3A b
® Fire retardant foam
o Water b
Corrective action ® (Cleaned after above environment
® Water ® SEMexamination
® Soapy water
® MEK
® Acetone
Packaging * ® Hand-pressed onto or wrapped
e Plastic bags around fracture surfaces
e Paper Mode | DCB Mode | ENF ® SEM examination
Cutting ® Optical microscopy
® Abrasive saw Unfractured laminate
® Toothed saw Unfractured laminate

Figure 2.3-1. Task 1 Test Matrix
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Corrective Action. The primary objective here was to evaluate the effects of
corrective cleaning solution on the fracture surface. Corrective cleaning solutions such
as methyl ethyl ketone (MEK), acetone, and soapy water are commonly used to remove
foreign particles (such as resin dust) from the fracture surfaces. Tests of the effects of
these cleaning solutions on fracture surfaces were conducted in the same manner as
those for environmental contaminants. Exposure to MEK for 24 hours was also
examined.

Cutting. The primary objective was to evaluate the damage induced by an abrasive
saw as compared to a toothed saw. The specimens were cut with toothed and abrasive
saws. Subsequently, optical microscopy was used to evaluate the extent of damage due
to cutting.

Packaging. The primary objective was to evaluate the effects of packaging with a
paper or plastic bag placed directly on a fracture surface. Bags were tightly sealed onto
the fracture surface of a test specimen to simulate the packaging of a fractured part.
To increase the pressure on the fracture surface, the packaging bags were wrapped with
masking tape.

The test results were used to create the preliminary sub-FALN, which was then
revised in response to review comments by Air Force field representatives.

2.4 RESULTS

2.4.1 Literature Search and Review
A review of the references produced a generalized outline of composite-specific
concerns and guidelines. Emphasis was placed on sample selection, handling, and data
gathering. The review of published field investigation guidelines established the
following major areas:
a. Safety considerations and initial actions taken at accident investigation site
b. Preservation of evidence and photographic documentation
e¢. Macroscopic examination procedures
d. Determining need for laboratory analysis and choosing specimens
e. Care and handling of fractured materials
f. Cutting, packaging, and shipping
g. Restoration of fractured specimens after post-failure contamination

D180-31996-1
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2.4.1.1 Safety Considerations and Initial Actions Taken at Accident Investigation Site
Among the initial actions to be taken at the scene of an accident investigation are:

a. Document fleet information.

b. Secure the fractured structure from further damage.

e. Preserve important details for subsequent investigation.

d. Document contaminations such as ice, soot, and organic residue which may degrade

with time.

Potential situations which may adversely affect composite fractures may involve
exposure to UV radiation, heat, hydraulic fluid, or flame retardant.

Safety considerations in handling fractured composite materials fall into three
categories. Typically gloves are needed to handle the fractured components to avoid
fiber splinter penetration into the skin. Two practices are suggested when performing
high speed cutting of composite parts. Airborne carbon fibers from cutting operations
can find their way into electronic components where they present a shorting hazard due
to their conductivity. This can be minimized by using a cutting fluid, preferably water.
It is also prudent to avoid breathing machining and cutting dust by wearing a dust mask.

2.4.1.2 Preservation of Evidence and Photographic Documentation

Critical fracture information can be obtained by interpretation of the overall
appearance of a fractured component. The appearance, orientation, and relative position
of fractured component is essential for deducing the sequence of break-up and the
significance of a particular fracture in an accident investigation.

Composite components are unique due to their brittle fibrous nature. It is very
important to preserve by photographic documentation the patterns of cracks and
delaminations which are present in the composite structure. The relative positions and
appearance of these fractured segments form the basis for subsequent visual
macroscopic fractographic interpretations. A badly damaged composite structure is very
fragile and it is imperative that the photographic documentation be made before the
component is moved. This step may greatly aid the laboratory fracture analysis with the
reconstruction of the sequence of fracture events. Good documentation will also ensure
accurate traceability of the fractured component to the overall structure.

D180-31996-1
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2.4.1.3 Macroscopic Examination Procedures

These procedures have been established through the documentation in case histories
and the development of some concise visual crack pattern recognition rules.

For composite structures, these rules are just beginning to be realized. There are
some important similarities in the crack propagation patterns between metals and
composite structures.

Specific composite macroscopic fractographic features which are commonly used
are given in Figure 2.4-1.

2.4.1.4 Determining Need for Laboratory Analysis and Choosing Specimens

During the course of a failure analysis it is often necessary to refer to technical
experts to determine the ultimate cause of failure. Selection of the appropriate
laboratory is based on the level of expertise and the array of laboratory instrumentation
required to do the job.

In composite failure analysis, the laboratory selection is critical since the number of
established composite failure analysis experts will initially be few in number.

The optimum specimen is the largest, most inclusive portion of the critical failed
composite structure. Specimen labeling should be done to allow traceability to the part

drawing.

2.4.1.5 Care and Handling of Fractured Materials

In a failed composite component, fragile fibrous fracture features may be damaged
in transport. Handling critical fracture surfaces or rubbing together in attempting to put
fractured components back together can destroy important fracture features.
Protective coatings used for metals fractures in the past should not be used. Avoid
introducing cutting an machining debris onto the fracture surface.

2.4.1.8 Cutting, Packaging, and Shipping

Special attention should be given to restraining a fractured component to keep it
from being damaged in transit and protect the component from the environment. Some
of these issues were examined by completion of the test matrix presented in

Figure 2.3-1.
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Mode

Environmental condition

Macroscopic fracture features

Interlaminar tension
dominated

Low temperature/dry e Smooth, glassy fracture surface _
® Major portion of fracture between plies
Hot or hot/wet ® Smooth but with loose fibers strewn on surface

e Major portion of fracture within plies
e May be permanent deformation of laminate

Intertaminar shear dominated Low temperature/dry

o Surface flat, but with “milky” appearance when held
atangle to light )
o Major portion of fracture between plies

Hot or hot/wet

® Also exhibits “milky” appearance
@ Tends to fracture within a ply
@ Loose fibers on surface

Translaminar tension

. Roughajagged fracture surface with individual fibers
protruding from surface

Translaminar compression

e Extreme surface damage. Large regions of fibers
fractured on same plane
® Very few, if any, fibers protruding from surface

Translaminar flexure

e Two fairly distinct regions, one exhibitin
translaminar tension and the other transiaminar
compression, the regions being separated by a
neutral axis line

Figure 2.4-1 Macroscopic Fracture Surface Features
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2.4.1.7 Restoration of Fractured Specimens After Post-Failure Contamination

As with fractured metals, cleaning the fracture surface should be undertaken with
caution. Often it is possible to perform microscopic examinations in the as-received
condition and then initiate a cleaning protocol and repeat the examination.

2.4.2 Consuitation With Experts

For the most part, areas of concern voiced by the panel regarded macroscopic
inspection methods and the preservation of evidence. It was generally agreed that only
time and experience with large test and flight structures would adequately build
macroscopic inspection technology for composites to equal that which currently exists
for metallic structures. The three major concerns regarding macroscopic fracture
analysis were: (1) differentiation between slow crack growth due to fatigue and rapid
crack growth due to overload and crash; (2) identification of a primary load types
operative during fracture; and (3) determination of crack growth direction.

Macroscopic identification of fatigue damage has been limited to fractures which
exhibit closely spaced beach marks on delaminated surfaces. Large components that fail
during fatigue loading often do not exhibit these macroscopic features.

Within this program, efforts pertaining to rate sensitivity were restricted to
microscopic variations in delamination. Macroscopic identification of load type at
fracture has been well understood for several years (see Fig. 2.4-1). However,
techniques for determining the direction of crack growth by macroscopic methods have
just begun to be developed. Methods which involve erack branching, the T-junction rule,
crack alterations at fastener holes, and hand-loading of the cracked (but unfractured)
structure have been shown to greatly aid in the determination of crack growth

directions.

2.4.3 Test Matrix Development and Performance

Control Specimens. Before exposure to test conditions, specimens showed features
typically seen in room temperature/dry fracture specimens. Rivermarks and resin flow
exhibited by the interlaminar Mode I tension specimen (Fig. 2.4-2) indicated the crack
propagation direction. Hackles and scallops in the interlaminar Mode II shear specimen
(Fig. 2.4-3) could not be used to determine crack growth direction.
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Environmental EBffects. Fracture surfaces exposed to environmental contaminants
for 30 minutes showed no sign of degradation in fracture features (Fig. 2.4-4 through
2.4-9). The features observed were consistent with those observed on control specimens.
Long-term exposure to AFFF had little effect on fracture features (Fig. 2.4-10 and
2.4-11), although the features were not as defined as in control specimens.

Corrective Action. Fracture surfaces exposed to soapy water, MEK, and acetone
for a short time showed no sign of degradation in the fracture features (Fig. 2.4-12
through 2.4-17). In the long-term exposure specimens, the Mode I tension fracture
surface exposed to MEK for 24 hours revealed localized pits due to resin swelling, and
rivermarks were not as distinet as the control specimen (Fig. 2.4-18). However, the
24-hour Mode II shear fracture surface (Fig. 2.4.-19) was unaffected.

Cutting. The abrasive saw cut produced a smooth, consistent surface (Fig. 2.4-20)
highly desirable for handling delicate polymer-based composite structures. On the other
hand, the toothed saw created a rough surface from which the fibers were pulled out
(Fig. 2.4-21). This was due to the inconsistency in the blade.

Packaging. The fracture features were unaffected by the paper or plastic
packaging. Figures 2.4-22 and 2.4-23 are SEM fractographs of the surfaces of fracture
specimens that had been packaged with paper bags. Figures 2.4-24 and 2.4-25 are SEM
fractographs of the fracture surfaces after packaging with plastic bags. Unlike these
test specimens, an actual in-service fractured part may have a very irregular surface and
packaging may be extremely difficult. In such cases, it may be impossible to entirely
avoid damaging the evidence. Therefore, this test may not be a complete simulation of

the packaging effects.
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Note: Both faces A and B are abrasive saw cut
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Figure 2.4-20. SEM Fractographs of Abrasive Saw Cut Specimen
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3.0 TASK 2: EXPANSION OF FRACTOGRAPHIC TECHNIQUES
IN COMPOSITE FAILURE ANALYSIS

3.1 OBJECTIVE
The objective of this task was to identify, assess, and demonstrate new and

advanced failure analysis techniques.

3.2 APPROACH

This task was performed by our subcontractor, General Electric (GE). GE eonducted
a systematic review to identify new and currently applied fractographic techniques that
may be useful for composite failure analysis. These promising techniques were evaluated
and the results are provided for incorporation into the handbook. GE provided an
independent review of Boeing's FALN as well as additional experience in composite
fractography. This ensured continuity with Boeing's existing work and awareness of the
methodologies, strengths, and limitations related to this critical analytical discipline.
Figure 3.2-1 shows the flow diagram for this task.

3.3 METHODS

In order to evaluate promising fractographic techniques, three subtasks were
identified: (1) identification of technique; (2) evaluation and assessment; and
(3) technique development. Initially, information was gathered from a literature search,
Boeing and GE conferences, and visits to other sites of expertise. This data was then
used to select techniques warranting further investigation, which were applied to various
controlled failures and evaluated for usefulness in conducting failure analysis

investigation.

3.3.1 Identification of Techniques

The literature search was conducted using GE technical internal sources and the
Metadex, Compendex, and Aerospace databases. The key words used search were
"failure analysis of composites," "failure analysis of fiber reinforced material," and
"fractography of composites." The search included material from as far back as 1969,
but the main emphasis was on articles from 1980 to 1989 and especially articles that
were not reviewed in the previous C-5010 contract.
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Figure 3.2-1. Task 2 Flow Diagram
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3.3.2 Evaluation and Assessment

Sites of expertise were selected by surveying the other aerospace companies to
determine if they were active in conducting failure analysis investigations of composite
components or subcomponents, had an exclusive composite failure analysis group or
expert, and were willing to share their techniques. The following three sites were agreed
upon by the Air Force, Boeing, and GE:
a. Lockheed California Company

Kelly Johnson Research Center

Rye Canyon, CA

Contact: Don Petit.
b. United Technologies Corporation

Sikorsky Aircraft Division

Stratford, CT

Contact: Tom Murphy.
c. Royal Aircraft Establishment

Farnborough, Hants, UK

Contact: David Pursiow.

The visit to Dr. Purslow was later cancelled due to difficulties in placing a

purchasing order to a private citizen overseas and unanticipated consultation costs.

3.3.3 Technique Development

Several techniques were identified for evaluation and the AS4/3501-6 material
system was selected based on previous experience. The fabrication and test techniques
(such as interlaminar Mode Il tension, interlaminar Mode II shear, translaminar tension,
and translaminar compression tests) were essentially identical to those used in the
C-5010 program.

The final test matrix consisted of (1) verification of the fractographic results for
interlaminar Mode [ tension and Mode II shear and translaminar tension compression on
the AS4/3501-6 material system; and (2) development of two deply techniques, thermal
oxidative deply (currently used by GE) and cryogenic deply (currently used by Sikorsky),
and of the macro-cross sectioning technique (currently used by Lockheed). The three
latter techniques were evaluated on an AS4/3501-8 compression-after-impact (CAI)

specimen.

D180-31996-1
42

e —————————————————————————————————————————




3.4 RESULTS

3.4.1 Identification of Techniques
Figure 3.4-1 is a list of articles that were reviewed in detail. The following

techniques were identified:

a. Optical microscopy

b. Nondestructive inspection (C-scan, enhanced x-ray, and real-time radiography
techniques)

¢. Scanning electron microscopy (the most popular technique); stereographic views are
used to get the necessary depth of field for fracture surface analysis

d. Two physical deply techniques (peel and abrasion).

3.4.2 Evaluation and Assessment

GE visited Lockheed on 11 September 1987 and Sikorsky on 17 September 1987 to
review promising fractographic techniques. The visits included a general discussion of
the companies' failure analysis techniques and a detailed tour of their laboratories.

Lockheed California Company. Don Petit, Fatigue and Fracture Mechanics Group
Engineer, and George Morse, Non-Metallic and Physics Laboratory Group Engineer,
presented their analytical chemistry and metallographic failure analysis techniques.
Chemical analysis provides information on material chemistry conformance, presence of
oxidation reaction products, and presence of contaminants. Instruments such as the XPS
(x-ray photoelectron spectrometer) are used for surface analysis of both polymer-based
and metal matrix composites. Chemical and thermal analysis instruments such as the
Fourier transform infrared (FTIR) spectrometer, dielectric cure monitoring system, and
thermogravimetric analyzer (TGA) are used to determine bulk chemistry, extension of
cure, and composite thermal properties. Image analysis is used to determine fiber
volume and void content. Lockheed's use of SEM on composite fracture surfaces is
limited to the determination of fiber/matrix adhesion and fiber quality. No attempt,
other than visual examination, is made to identify failure mode or crack propagation
origin or direction. Lockheed has performed failure analysis on unreinforced resin parts
and relies heavily on analytical chemistry and metallography in its failure analysis
techniques.
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Item Literature

1 ngsslow, D.. “Matrix Fractography of Fiber-Reinforced Epoxy Composites”, Composites, Vol. 17, No. 4, October
1

2 *Robertson, R. E., et al, “The Stacked Lamellar Texture on the Fracture Surfaces of Fiber Composites”, Journal of
Materiai Sciences, Vol. 20, 1985, pp. 2801-2806

3 Johannesson, T, et al, “Influence of Moisture and Resin Ductility on Delamination”, Composite Science and
Technology, Vol. 28, 1985, pp. 33-46

4 'ggbeor;son, R.E., et al, “Fracture in Epoxy Matrix Resins”, Composite Science and Technology, Vol. 22, 198S, pp.
197-2

5 *Pursiow, D., et al, “The Effect of Environment an the Compression Strength of Notched CFRP, A Fractographic
Investigation” Composites, Vol. 15, No. 2, April 1984

6 *Donaldson, S. L. “Fractography of Mixed Mode I-Hl Failure in Graphite/Epoxy and Graphite/Thermoplastic
Unidirectional Composites”, AFWAL-TR-84-4186, June 1985

7 *Pursiow, D., “Composites Fractography without a SEM - the Failure Analysis of a CFRP I-beam”, Composites, Vol.
15. No. 1, January 1984

8 * Johannesson, T., “The Detailed Structure of Delamination Fracture Surfaces in Graphite/Epoxy Laminates”,
Journal of Materiai Science, Vol. 19, 1984, pp. 1171-1177

9 Purslow, D, et al, “The Effect of Pre-Loading on the Environmental Degradation of Carbon Fiber Reinforced
Plastics”, Composites, Vol. 14, No. 3, July 1983

10 Richards-Frandsen, R., et al, “Fracture Morphology of Graphite/Epoxy Composites”, Journal of Composites
Materials, Vol. 17, March 1983, pp. 105-113

1 *Pursiow, D., 'Fracto%nl'apahic Analysis of Failures in CFRP”, Characterization, Analysis, and Significance of
Defects in Composite Materials, AGARD Proceedings No. 355, July 1

12 *Clements, L. L., et al, “Failure of Morphology of (0°)g Graphite/Epoxy as Influenced by Environments and
Processing”, NASA-TM-81318, August 1981

13 Bishop, S. M., "The Significance of Defects on the Failure of Fiber Composites”, AGARD-R-690, December 1981

14 Theocaris, P.$S., etal, “Crack Propagation in Fiberous Composite Materials Studied by S.€.M.”, J. Composite
Materials, Vol. 15, March 1981, p. 133

15 Awerbuch, J., et al, "Off-Axis Fatigue of Graphite/Epoxy Composite”, Fatigue of Fiberous Composite Materials,
ASTM STP 723, 1981, pp. 243-273

16 *Purslow, D., “Some Fundamental Aspects of Composites Fractography”, Composites, October 1981, pp. 241-247

17 ;Kline, R.A. etal, “Composite Failure Surface Analysis” J. Composite Materials, Vol. 14, October 1980, pp. 315-

24

18 Pursiow, D., “Further Fractographic Characteristics of Peel Failures in CFRP”, Composites, Vol. 18, No. 3, July 1987

19 Morris, G. E., and Hetter, C. M., “Fractographic Studies of Graphite/Epoxy Fatigue Specimens”, Damage in
Composites Materials, ASTM STP 775, 1982, pp. 27-39

20 Grinty, C. A, Irvine, T.B., “Fracture Surface Characteristics of Notched Angleplied Graphite/Epoxy Composites”,

NASA-TM-83786, 1984

* Articles reviewed previously by Boeing on the C-5010 contract.

Figure 3.4-1. Articles Reviewed by G. E.
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Sikorsky Aircraft Division. Tom Murphy, Material and Process Laboratory Chief
Engineer, and Peter Konieczny, Composite Failure Analyst, presented their failure
analysis techniques and demonstrated composite hardware. Two carbon/epoxy
press-molded spars for tail rotors of the -76 commercial helicopter and the Army
Blackhawk helicopter were presented as examples of Sikorsky's defect characterization
techniques. The spars were primary rotating structures that have been in service since
the mid-1970s. The failure analysis determined that the main causes of failure were
manufacturing defects such as wrinkles, voids, improper layup, and poor quality. These
defects were caused partly by inappropriate machining and processing.

In one case, the center portion of the press—-molded spars contained excessive resin
flow causing in-plane and out-of-plane fiber wrinkles. The parts passed C-scan
inspection and were released to the field. Two spars failed in the first 100 hours of
service because of the defects. Optical microscopic examination of the fracture
surfaces revealed the wrinkles, and metallography was used to evaluate the number of
plies affected. Sikorsky also machined interlaminar shear and tensile specimens from
the hardware and conducted static tests on actual spars to establish strength knockdowns
due to the wrinkles. The findings led to modification of Sikorsky's die-closing procedures
during press molding and the inclusion of a woven glass serim (glass tracer) on each ply
of carbon/epoxy to allow x-ray inspection. A new specification was established allowing
a 1/10 inch peak-to-peak maximum on in-plane wrinkles and no out-of-plane wrinkles.

In another instance, spars were laid up improperly (ply drop-offs were too close
together causing interlaminar failure); in yet another, a 70 degree ply was laid up instead
of a 20 degree ply causing high interlaminar shear stresses. These defects were found by
optical microscopic examination of the fracture surfaces.

Once the defects have been characterized, the laboratory feeds the information
back to the stress analyst to recalculate the stresses. The fracture surfaces are not
completely separated, but the specimen is deplied by embrittling it in liquid nitrogen and
then bench breaking it. However, no analytical techniques or fractography are utilized
in the investigation. Generally, Sikorsky relies heavily on low-power optical mieroscopy
and specimen testing to determine causes of failure.

D180-31996-1
45




3.4.3 Technique Development

In this subtask, GE verified Boeing fractographic results for the model carbon/epoxy
material system AS4/3501-6. New techniques such as the two deply techniques and the
macro-cross-sectioning technique were then evaluated on an AS4/3501-6 compression-

after-impact specimen.

3.4.3.1 Verification of Boeing Techniques

Room temperature fractographic results were verified for the following known
conditions of failure: (1) interlaminar Mode I tension; (2) interlaminar Mode II shear;
(3) translaminar tension; and (4) transiaminar compression. All fractures were induced
under room temperature (RT)/dry conditions.

Interlaminar Mode I Tension. Optical examination revealed a smooth, reflective
surface. SEM fractography revealed rivermarks and resin microflow in the matrix rich
areas between plies indicating propagation in a direction consistent with the
mechanically induced crack direction (Fig. 3.4-2). Fiber/matrix adhesion was good.

Interlaminar Mode II Shear. Visual examination of the Mode II shear surface showed
a milky white appearance when the specimen was held at an angle to the light. SEM
examination revealed hackles and scallops, indicative of a Mode Il shear failure
(Pig. 3.4-3). As in the Boeing analysis, the propagation direction could not be
determined from these features. The fiber/matrix adhesion was good.

Translaminar Tension. Macroscopically, the fractures were flat and planar. At
higher magnifications the edges appeared rough with segregated fiber bundles protruding
from the fracture plane. Fiber pullout was observed in varying proportions over the
entire fracture. SEM fractography revealed fiber end fractures with fan patterns
indicating the propagation through each fiber (Fig. 3.4-4). Fiber end fractures often
initiated tangentially to the previous failed fiber and propagated off-axis. The overall
propagation direction indicated by the fiber end fractures was consistent with the
meéhanically induced crack direction.

Translaminar Compression. Macroscopically, the fractures were jagged. At higher
magnifications, the compressive region was locally flat with all fibers and the matrix
fracture in the same plane. The fracture was littered with debris. Fiber buckling was
observed in both the 0 and 90 degree plies. SEM fractography of the compressive region
revealed fiber end fractures, each exhibiting a compressive zone and a tensile zone
divided by a neutral axis (Fig. 3.4-5).
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In summary, GE fractographic results for ModeI tension, Mode Il shear,
translaminar tension, and translaminar compression agreed with those derived from
Boeing techniques developed under the C-5010 program.

3.4.3.2 Investigation of New Techniques

Three techniques currently used by the industry were examined: (1) macro-cross
sectioning, used by Lockheed: (2) thermal oxidative deply, used by GE; and (3) cryogenic
deply, used by Sikorsky. The new techniques were evaluated on an AS4/3501-6
compression-after-impact specimen.

The compression-after-impact specimen was quartered through the impact site and
the various techniques were employed on the separate quarters (Fig. 3.4-6 and 3.4-7).

Macro-Cross-Sectioning. Two metallographic sections were taken to observe the
crack patterns surrounding the damage zone from two orientations. The lengthwise
cross-section inecludes the actual point of impact and shows the main crack path to the
back surface. The damage spreadout conically from the impact site to the back surface
of the specimen, as indicated by the small translaminar cracks (Fig. 3.4-8 and 3.4-9). By
aligning these small cracks, the location of the impact could be determined. The number
and size of delaminations increased toward the back of the specimen. The transverse
cross-section was taken adjacent to the impact site to determine damage effects near to
the impaet (Fig. 3.4-10). As in the lengthwise section, the size and number of
delaminations increased toward the back surface. The damage was more severe at the
edge of the specimen than at the center. This edge showed evidence of interlaminar
fracture, translaminar fracture, intralaminar fracture, and microbuckling (Fig. 3.4-11
and 3.4-12).

Thermal Oxidative Deply. Thermal-oxidative deply was performed on a third
quarter. The sample was heated in air at 600F for 12 hours. During heating, the
specimen expanded due to the gases evolved. Deply was then performed at room
temperature by peeling the layers apart with tweezers and carefully placing them in
correct order (Fig. 3.4-13 through 3.4-15). All layers were deplied. It was observed that
colored bands were produced during the heat cycle, but these bands did not seem to
correspond with prior delaminations. However, several plies exhibited lighter colored,
less reflective areas that did align with the delaminations indicated by ultrasonic and X-
ray inspection. Fractography of these regions was not performed.
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. . CAI AS-4/3501-6 2/3X 213X

Point of Impact 10X

Figure 3.4-6. Photomacrographs of AS-4/3501-6 C..mpression-After-Impact Specimen
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Figure 3.4-8. Photomicrograph of AS-4/3501-6 Compression-After-Impact Specimen, Section A1
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Cryogenic Deply. The last quarter was used for cryogenic deply and prepared by
soaking in liquid nitrogen prior to peeling the layers with tweezers. Only the existing
delaminations were peeled apart. Examination of these layers revealed light colored,
less reflective regions similar to those observed in the thermal oxidative deply (Fig. 3.4-
16). These regions correspond to the expected delamination locations. Fractography was
not performed on these regions.

Of the fractographic methods tested, the macro-cross—sectioning technique provided
the most information, detailing the amount of matrix cracking, the number of
delamination planes, and the areas of fiber breakage. Of the deply techniques, GE's
thermal oxidative deply technique gave the clearest indication of previous delamination

planes.
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4.0 TASK 3: EXPANSION OF THE FRACTOGRAPHIC DATABASE

4.1 OBJECTIVE

The objective of this task was to build a comprehensive database for the model
system studied under the previous C-5010 program in Task 3A, and using this information
and the experience gained from the C-5010 program, develop a database for other
composite materials. The completed task provided a larger database for the model
system and formed a set of findings from which failure conditions and tests for materials -
other than the model AS4/3501-6 system could be selected.

4.2 APPROACH

This task was divided into two subtask: 3A, an expansion of the AS4/3501-6
database evaluated in C-5010 program (Fig. 4.2-1); and 3B, a compilation of a similar
database for other carbon-based and epoxy-based material svstems (Fig. 4.2-2). The
database developed for AS4/3501-6 was reviewed and additional conditions of failure
were identified. From this information a new test matrix was developed for Task 3A
(Fig. 4.2-3). The parameters examined in this subtask were:
a. Stress/loading conditions
b. Environmental effects
e. Process deficiencies
d. Product forms

Test specimens were fabricated and tested with known conditions of failure.
Subsequently, the morphological fracture features were analyzed fractographically.

Based on the AS4/3501-6 database developed in Task 3A, a reduced test matrix was
developed for the other material systems (Fig. 4.2-4). Six material systems that are
currently or soon to be in service were evaluated: carbon/PEEK, carbon/PMR-15,
carbon/8551-7, boron/epoxy, Kevlar/epoxy, and glass/epoxy. @ To provide direct
comparison against AS4/3501-6, the material systems were divided into carbon-based and

epoxy-based categories.
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2 End notched flexure (ENF)

3 Translaminar tension
notched 4 - pt load

4 Translaminar compression
notched 4-pt load

Material system Spt:lc;:en En#;gm?:m at Layup s';géi‘r::ens Comments
PEEK/graphite 1.2,3 |70°F/dry, 270° F /wet{ (0/90)s 2 eacn |No 4 due to post-
tape grade 145 failure damage of
APC-2/AS4 graphite fibers

B
8| PMR-15/graphite 1,2,3 |70°F/dry, 500° F/dry | (0/90)s 2each |Same as above
© fabric
;’g C3000 8H satin grade 145
S Multiphase 1.2,3 [70°F/dry, 270° F/wet| (0/90)s 2 each |Same as above
resin/graphite
X8551/IM7 350°F
tape grade 145
Boron/epoxy tape 1,2,3,4 |70°F/dry, 270°F /wet| (0/90)s 2 each
Kevlar/epoxy 1.2,3.4 |70°F/dry, 200° F/wet| (0/90)s 2 each
3 | fabric style 285
8| BMS8-219250 F
'S. Kevlar 49/F155
x
§ Fiberglass/epoxy . 1,2,3,4 |70°F/dry, 200° F/wet| (0/90)s 2 each | Same as above
fabric style :
181-150
BMS 8-79 250°F
S-glass
Legend:
1 Double cantilever beam (DCB) DCB —/1 “

10 in———-{T—

= ENF v
f—"6in {—FH1in
4
1 5 min
_ A 7T
=4  25in § =]
25 N

4] 0.127 (0.5} in
]

-

L‘—G..’!S‘ (2.5‘) in—-—j

Figure 4.2-4. Task 3B Test Matnix
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4.3 METHODS

4.3.1 Fabrication Procedures for Task 3A

To evaluate anomalous conditions known to typically cause premature failure of
structures, specimens were fabricated as follows:

Low Resin Content. One ply of Mochburg W 1850 polyester bleeder mat was applied
for every two plies of prepreg. This technique reduced the nominal resin content of 35%
by approximately 7% to produce a laminate with 28% resin.

High Resin Content. A film stacking method was used to increase the resin content
by 7% 3501-6 neat resin films were cut and sandwiched between prepreg plies to achieve
a 42% resin content laminate.

Undercured. Specimens were cured at 260°F and 45 psi for a dwell time of one
hour; the standard cure cycle is 355°F and 85 psi for two hours.

Double-cured. Laminates were cured at the standard cycle, debagged, rebagged,
and cured again at the same cycle.

4.3.2 Hot/Wet Preconditioning

Prior to mechanical testing, specimens that required hot/wet preconditioning were
placed in the environmental chamber and subjected to 100% relative humidity at 160°F
for 4 weeks.

4.3.3 Mechanical Testing
Seven mechanical tests were used to create fracture surfaces with known failure

conditions.

K¢, Stress Concentration Factor. K; is the ratio of the maximum stress in the region
of a stress concentrator (such as a hole) to the stress in a similar strained area without
the stress concentrator. The open hole tension test was used to simulate fractures under
large and small K; conditions. Eight one by ten inch AS4/3501-6 specimens were
fabricated, half with a (0)94 stacking sequence and the other half with (:45)19g. Two
large and two small K¢ tests were simulated for each layup type. For the large K; test,
a 0.5 inch diameter hole was drilled at the center of the specimen. Simililarly, a 0.1 inch
diameter hole was used to simulate a small K{. Specimens were mechanically tested in
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tension at an approximate deflection rate of 0.05 inch/min. All tests were conducted at
RT.

Interlaminar Mode I Tension (DCB). Interlaminar Mode ! tension fractures were
produced using a DCB specimen geometry as shown in Figure 4.2-5. In this test,
interlaminar tension conditions are generated at the specimen midplane by deflecting
two halves of the beam at one end of the specimen. This was made possible by inserting
a release film, fluorinated ethylene propylene (FEP). The specimen configuration is
illustrated in Figure 4.2-6. Special fixtures were developed for this specimen to allow
free-pin rotation at the beam end and mechanical grip attachment. The triangular
specimen grips were wedged into the crack tip formed by the FEP insert (Fig. 4.2~7).
This resulted in an opening displacement at the beam end prior to mechanical testing.
Any precrack observed during clamping was marked on the specimen edge. The specimen

was loaded under deflection control on a mechanical testing system servohydraulic load
frame with the rate of cross-head deflection adjusted during the test to produce a
relatively constant rate of crack growth of about 1.27 to 2.54 em (0.5 to 1.0 inch)/min.
Cross-head deflection rates ranged from 0.25 to 0.51 em (0.1 to 0.2 inch)/min.

Interlaminar Mode I Shear (ENF). Interlaminar Mode Il shear fractures were
produced using the modified end-notched flexural specimen geometry shown in Figure
4.2-8. FEP was again used as a crack starter. Tests were carried out using a cantilever
geometry fixture that allows the uncracked end to move horizontally but prevents it
from rotating or moving vertically so that no extraneous (vertical) loads will be
introduced as the beam shortens under deflection. With this geometry the top surface of
the specimen is loaded in pure compression, while the bottom surface is in pure tension.
The result is pure shear at the crack tip. During testing, cracks typically propagated
rapidly along the midplane of the specimen for the first 60% of the test span, generally
followed by a series of slower growth episodes. Full monitoring of the direction of
eracking was precluded during the period of rapid growth; however, during the periods of
slow, stable growth crack extension proceeded as expected, away from the FEP crack
starter and toward the cantilever beam support fixture.

Creep Testing. Four tapered specimens were tested under creep condition: two
specimens under interlaminar Mode I tension at RT and at 270°F, and two under
interlaminar Mode II shear at the same temperatures. Specimens were tested in a Satec
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Figure 4.2-5. Double Cantilever Beam Specimen Geometry
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0.05 in

015m-—| |-—J
T_

Load (P) 0. 5 in

01|n——|

-

Top View
N, *
0.15 £ 0,01 in [[f—onm ]

Load (P)
) ) FEPcrack starter  ____ |
f 2int 2in I”'— between center plies

| 13 in Minimum
Side View

Figure 4.2-6. Double Cantilever Beam Specimen

Grips

Figure 4.2-7. Double Cantilever Beam Grip Fixture
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Figure 4.2-8. End-Notched Flexure Specimen Geometry
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25,000-1b capacity Universal test machine with the crosshead speed set at .001 in/min.
Deflection was measured at the crosshead using a motion transducer. Load versus time
and deflection versus time curves were recorded on a Soltec recorder.

For the elevated temperature tests, a Watlow rubber strip heater was used as the
heat source. Silicone adhesive was used to adhere the flexible silicone rubber heater to
the specimen. Thermocouples were located throughout the specimen to assure
maintenance of the 2700 test temperature.

High-Rate Sensitivity. To create RT high-rate Mode ! tension and Mode II shear
fractures, projectiles were shot into a 1l-inch by 10-inch specimen protected by an
aluminum plate at the location of penetration. For DCB specimens, a 1/2-inch thick
aluminum plate was double-back taped to a cutout as shown in Figure 4.2-9. A vise was
used to hold one end of the specimen. The aluminum plate served as a shooting target
deflecting the back half of the laminate away from the front half. This created a Mode |
tension fracture. The interlaminar Mode II shear fracture was created by shooting a
projectile at an aluminum target plate attached to the forward face of the specimen.
The force of the impact deflected both halves of the laminate. FEP craci- starter
initiated crack propagation by the sliding of the two halves of the laminate, creating a
Mode II shear fracture.

Translaminar Tension and Compression (Notched Pour Pcoint Tension (N4PtT) and
Notched Four Point Compression (N4PtC)). Controlled translaminar tension and
compression failures were generated using a four-point beam apparatus. The specimen
has a notched-bend-bar geometry. The position of a chevron-shaped notch in the
specimen determined the type of load the specimen experienced; when the notch was
placed across from the beam's lower surface, the specimen was in tension (Fig. 4.2-10),
while a specimen with its notch across from the beam's upper surface was in compression
(Fig. 4.2-11).

Compression After Impact (CAI). Compression testing was performed on a 4-inch by
6-inch laminate. The specimen was first centrally mounted on an impact support fixture
(Fig. 4.2-12) and impacted on the tool side by an indenter with a 0.62 inch hemispherical
tip at 1200 inch lbs/inch. After impact, the specimen was examined using through
transmission ultrasonic (TTU) techniques. The specimen was then placed on a 50 kip
servohydraulic machine with a deflectometer and loaded to failure with a displacement
of 0.05 inch/min.
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Deflection of half

of the laminate
L

(\ AN

Aluminum plate
double-back taped to specimen

15in

\FEP crack starter

(a) High-rate fracture simulation for doubls cantilever
beam (DCB), Mode | tension specimen

Deflection of both halves

FEP crack starter

< ---—-—— _
Aluminum plate
double-back taped to specimen

(b) High-rate fracture simulation for end-notched
flexure (ENF), Mode Il shear specimen

Figure 4.2-9. High-Rate Fracture Simulation
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Figure 4.2-11. Notched Bend Bar Compression Specimen Geometry
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Test specimen

3 X 5 inch cut-out
Clamp

Support base

Figure 4.2-12. Compression-After-impact Support Fixture
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4.4 RESULTS
4.4.1 Task 3A: Model System

4.4.1.1 Stress/Loading Conditions

Kt{. Specimens with +45 degree and 0 degree layups and with large and small
diameter holes were subjected to open hole tension tests.

In the large K¢, +45 degree layup specimen, visual observation revealed an elongated
hole in the loading direction. This hole was caused by loading the +45 degree ply layup in
0 degree tension. The specimen did not produce a translaminar fracture as it would have
with a 0/90 degree ply layup. Rather, there were two fractures, originating from the
sharp radius of the hole and propagating in opposite directions to one another. Three
locations were examined to determine the fracture modes and origins (Fig. 4.4-13).
Removing the delaminated surface ply revealed rivermarks in two locations indicating
the crack propagated toward the outer edge of the specimen. The cracks initiated near a
third location, under Mode II shear (Fig. 4.4-14).

In the large K, 0 degree layup specimen, two main fractures occurred in the
intralaminar region. They originated at opposite edges of the hole and propagated
outward and parallel to one another (Fig. 4.4-15a). One crack was examined optically; it
had occurred under Mode II shear (Fig. 4.4-15b).

The fracture of the small Ky, +45 degree layup specimen produced delamination
approximately 0.5 inch to both sides of the open hole (Fig. 4.4-16a). The microscopie
examination of the delamination revealed that the fracture was created predominately in
almost pure Mode II shear (Fig. 4.4-16b). However, a Mode I tension fracture occurred
near the outermost region of the delamination (Fig. 4.4-16¢).

In the small K¢, 0 degree layup, the fractures occurred in the intralaminar region.
Fractography was performed on two fracture surfaces: one near to the hole and the
other toward the outer edge (Fig. 4.4-17a). It was revealed in the optical examination
that the fractures occurred by pure Mode II shear, as evidenced by the presence of
hackle formations (Figs. 4.4-17b and ¢). In contrast to the small K¢, +45 degree layup
specimen, the hole was enlarged by at least five-times.
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Photomacrograph of sample; fracture area shown below

leadng === ==————— i Loading

direction % i direction
- P! D

—_—— |-~

Displacement in hole diameter
(a) Diagram of fracture area

(b) Optical photomicrograph of fracture
surface, location a-a; magnified 400X

Legend:
H hackles

Figure 4.4-15. Open Hole Tension Fracture: 0 Degree Layup, Large K,
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Creep. RT/Dry and elevated temperature/dry creep specimens were tested under
tension and shear.
Interlaminar Mode I Tension, RT/Dry. Visual observation revealed a smooth, glassy

surface typical of an interlaminar Mode I tension fracture. There were visible crack
arrest marks ("beach marks") running perpendicular to the mechanically induced erack
direction (Fig. 4.4-18). The spacing between these marks was quite consistent due to the
constant loading rate throughout the creep test. Optical fractography focused on what
appeared to be a stripped fracture region. Due to the re-initiation of the crack, the
location just after crack arrest appeared much rougher than the region just prior to it
(Fig. 4.4-19). The rivermarks were more readily observed in the region prior to the erack
arrest.

SEM fractographs were taken of the three regions of fracture, including the location
of the crack arrest (Fig. 4.4-20). The fracture topography was smooth with distinct
rivermarks just prior to the periodic crack arrest; after reinitiation of the crack, the
fracture appeared uneven with very fine rivermarks (Fig. 4.4-21).

Interlaminar Mode I Tension, 270°F/Dry. Visual observation revealed a smooth,
glassy fracture surface similar to that of the RT specimen. Crack arrest marks were

again observed (Fig. 4.4-22). However, there were fragments of loose fibers on the
fracture surface. These fibers may have separated from the resin matrix prematurely
due to poor adhesion. The fracture topography at the region before and after the erack
arrest was smooth (Fig. 4.4-23), unlike that of the fracture created at RT. The
difference between the RT and 270°F fractures may be due to lower resistance to crack
propagation in the 270°F specimen. The SEM analysis confirmed the observations made
during the optical analysis (Fig. 4.4-24).

Interlaminar Mode II Shear, RT/Dry. Visually, the mating fracture surfaces looked
somewhat different: one surface smooth and glassy, the other rough and dull
(Fig. 4.4-25). Crack arrest marks were observed on the fracture surfaces at the ends of
the specimen and at the center. SEM fractographs revealed that the glassy surface
consisted largely of scallops (with some hackles) (Fig. 4.4-26) and the rough surface
exhibited mainly hackles (with some scallops) (Fig. 4.4-27).

Interlaminar Mode II Shear, 2709F. Visual examination revealed a fracture with
smooth and glassy surface on one of the mating sides and rough and dull on the other
(Fig. 4.4-28). This was similar to the fracture surfaces created at room temperature.
The glassy surface exhibited mostly of scallops (with some hackles) (Fig. 4.4-29), and the
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Crack arrest
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Figure 4.4-23. Optical Photomicrographs of Interlaminar Mode | Tension, 270 F/Dry Creep Fracture
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rough surface consisted mostly of hackles (with some scallops) (Fig. 4.4-30). Optical and
SEM analyses showed no significant features to distinguish the RT and 270°F creep
specimens.

High Rate RT/Dry. Specimens were shot with a projectile to produce high rate DCB
and ENF-type fractures.

Interlaminar Mode I Tension, RT/Dry. Visual observation of the RT, DCB Mode I
tension specimen, tested under conditions resulting in a high rate of fracture, revealed

fractures somewhat different from those in a DCB/RT Mode I tension specimen tested at
constant rate. Due to the very rapid crack propagation, the fracture surface did not
exhibit the clear macroscopic crack arrest marks which are characteristic of slow crack
growth. In some locations, fiber splinters were peeled away from the matrix.

Under the optical microscope, a cleavage fracture was observed with numerous
rivermarks showing an overall crack direction (Fig. 4.4-31).

To illustrate the different rates of fracture, two regions on the specimen were
documented and analyzed. Region I was created by the initial projectile; Region II was
created by a second projectile penetration.

SEM analysis showed that Region I experienced a lower energy fracture than
Region Il, as evidenced by its rougher surface and more mixed mode fracture
(Fig. 4.4-32). This may be a resuit of the initially delaminated portion driving the crack
at a higher rate. There were also many fiber splinters in Region II (Fig. 4.4-33).

Interlaminar Mode Il Shear, RT/Dry. Visual observation revealed a fracture surface

similar to a typical interlaminar Mode II shear specimen tested at constant rate; the only
noticeable difference was the fiber splinters seen on the high load rate specimen.

Optical microscopy of the fracture surface showed a difference between the high
rate specimen and the typical ENF specimen tested at constant rate (Fig. 4.4-34). Due
to the very rapid fracture, hackles were formed in various tilts and shapes; at slower
crack growth rates, the hackles tend to form parallel to one another. As noted
previously on Mode I specimens, regions created by initial and secondary projectile
penetration (resulting in different crack growth rates) exhibited no distinctly different
features (Fig. 4.4-35 and 4.4-36).

Compression After Impact. Visual inspection revealed extensive buckling damage
around the point of impact. Failure of the panel occurred in a band approximately 1.0 to
1.5 inch wide across the full width of the panel (Fig. 4.4-37). TTU indicated a
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(AS-4/3501-6)

f Ultrasonic (TTU) Scan of Impact Specimen

ission o

Figure 4.4-37. Extent of Impact Damage Identified by Through Transm




delamination which was exposed for further examination to determine the mode of
failure in the vicinity of the impacted area. An examination was conducted under the
optical microscope. In the region immediately surrounding the impact site
(0.3 inch in diameter), the features were predominately hackle formations indicating
Mode II shear failure. The outer perimeter of the impact site was predominately covered
with rivermarks and resin microflow indicating Mode I tension failure mode (Fig. 4.4-38).
The crack initiated at the impact site and propagated radially through the specimen from
the tool side in both interlaminar and translaminar fracture modes (Fig. 4.4-39).

4.4.1.2 Environmental Conditions

Elevated Temperature Exposure. DCB, ENF, and N4PtT specimens were exposed to
a 2000°F flame for 5 minutes.

Interlaminar Mode I Tension. Visual observation revealed feather-like, resin-starved

carbon fibers on the outermost ply, which was the first exposed to the flame. The
remaining 23 plies delaminated, but were kept intact by residual resin. The fracture
surface created prior to exposure to the elevated temperature, appeared quite low in
resin content, as evidenced by the unfilled regions between the fibers, and exhibited the
smooth, glassy surface typical of Mode I tension fractures.

Gp'tical examination showed that the fibers had just enough resin to hold them
together. Due to the minimal resin content, there were no signs of rivermarks or resin
microflow to indicate crack propagation direction (Fig. 4.4-40).

SEM analysis confirmed the optical results. The fibers were resin-starved to the
point that individual fibers were clearly visible (Fig. 4.4-41).

Interlaminar Mode II Shear. Visual, optical, and SEM analyses revealed the same
results as the interlaminar Mode I tension specimen (Figs. 4.4-42 and 4.4-43).

Translaminar Tension. Visual observation of the translaminar tension fracture

surface exposed to 20000F flame revealed a surface with rows of bare fibers. Most of
the resin matrix was burned off near the fracture surface.

The bare fibers were especially visible in the SEM fractographs. Radial patterns
typically seen under translaminar tension failure mode were observed on the fiber ends
prior to the flame test was no longer present afterwards (Fig. 4.4-44). Instead, the fibers
showed extensive cracking on their end surfaces.
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Water Immersion and Humidity. DCB, ENF, and N4PtT specimens were immersed in
water at 160°F for 4 weeks; similar specimens were subjected to 100% relative humidity
(RH) at 160°F for 4 weeks.

Interlaminar Mode I Tension. Visual observation of the water immersion and high

humidity specimens revealed smooth glassy fracture surfaces as commonly seefi in
interlaminar Mode I tension specimens at RT/dry conditions (Fig. 4.4-45 and 4.4-46). At
higher magnifications under the optical mieroscope, rivermarks and resin microflow were
seen. Work done in the previous contract, C-5010, determined that these features reveal
an overall crack propagation direction. However, it was noted that the rivermarks in
these specimens were not as distinct as they were in the RT/dry specimens (Fig. 4.4-47
and 4.4-48). In general, the humidity and water immersion specimens exhibited nearly
identical fracture characteristics. '

Interlaminar Mode II Shear. Visual observation of the fracture surface revesled a
flat but milky appearance when the specimen was held at an angle to the light. The
milky appearance is due to the hackles created by the shear loading and observed both
optically (Figs. 4.4-49 and 4.4-50) and with the SEM. Under higher magnification (SEM),
the hackles were seen to lack consistency in their shape (Fig. 4.4-51 and 4.4-52). Under
dry conditions, the platelets were tilted in a single direction and had a similar shape, but
in these wet specimens the features varied depending on their location.

Translaminar Tension. Visual and optical observations revealed little except for
evidence that the fibers were protruding from the through-thickness fracture. SEM
analysis of these fiber ends was performed. At high magnification the fiber ends
exhibited the unique radial patterns observed in the previous program. These radial
patterns indicate the localized crack direction for each individual fiber (Fig. 4.4-53
through 4.4-54). The sum of the individual fiber end radial patterns provides an overall
crack propagation direction. There were some indications of fiber pullout, but in

general, the fiber/matrix interface showed good adhesion.

4.4.1.3 Process Deficiencies

Undercured. Undercured DCB, ENF, and N4PtT specimens were examined visually,
optically and under the SEM.

Interlaminar Mode I Tension. Visual observation of the fracture surface revealed

the same smooth, glassy fracture surface commonly seen in interlaminar Mode I tension
specimens at RT/dry conditions. The laminate showed poor quality in its fiber/matrix
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Figure 4.4-48. SEM Fractographs of Interlaminar Mode | Tension, 0/90 Fracture After Exposure to Humidity (160 F)
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adhesion. The fibers were easily separated from each other and exhibited a feathery
texture. Because of the undercuring process, some of the fibers never reached the state
of wetting, causing loose fibers within the laminate. At higher magnifications,
rivermarks and resin microflow were seen (Fig. 4.4-55).

The SEM analysis revealed a fracture surface typically seen in an RT/dry specimen
(Fig. 4.4-56). However, optical observation showed many stray fibers indicating the lack
of fiber wetting from the undercuring process. The rivermarks were clearly observed
and showed the overall crack propagation direction.

Interlaminar Mode Il Shear. Visual observation of the fracture surface revealed a

flat but milky appearance when the specimen was held at an angle to the light. Like the
interlaminar Mode I tension specimen, the fibers appeared to have a feathery texture and
the laminate quality was poor. At higher magnifications, hackles were observed
(Fig. 4.4~57).

The SEM analysis revealed a fracture surface with fiber/matrix separation
characterized by an adhesive-type fracture (Fig. 4.4-58). This was evidenced by the
practically featureless surface. As in the Mode I tension specimens, the lack of fiber
wetting caused loose fibers to occur along the fracture surface.

Translaminar Tension. The specimens did not fracture as intended but rather

buckled. The undercuring caused insufficient cross linking in the polymer which lessened
the ability of the matrix to support the fiber (Fig. 4.4-59).

Double-cured. DCB, ENF, and N4ptT specimens prepared by double curing, were
examined visually, optically, and under the SEM.

Interlaminar Mode I Tension. Visual observation of the fracture surface revealed

the smooth, glassy fracture surface typical of an interlaminar Mode I tension specimen
at RT/dry conditions. At higher magnifications, rivermarks and resin mieroflow were
seen (Fig. 4.4-60).

The SEM analysis revealed a typical RT/dry fracture surface. It is thought that
additional eross-linking occurs in double-cured specimens causing the material to become
brittle (Fig. 4.4-61). The visual observation of the fracture was inconelusive although it
revealed a dry surface characteristic of a brittie material. The rivermarks were clearly
observed and showed the overall crack propagation direction.

Interlaminar Mode II Shear. Visual observation of the fracture surface revealed the
typical flat but milky appearance when the sample was held at an angle to the light. At
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Figure 4.4-58. SEM Fractographs of Interlaminar Mode Il Shear, 0/90 Fracture of Undercured Specimen
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higher magnifications, hackles were observed (Fig. 4.4-62). '

The SEM analysis revealed a typical RT/dry fracture surface with many hackles
between the fibers. The hackles were scattered along the fracture surface without any
orderly arrangement (Fig. 4.4-63).

Translaminar Tension. Visual and optical observations revealed a typical

translaminar fracture with protruding fibers. The fiber/matrix interface showed good
adhesion. The radial patterns on the fiber ends were clearly seen and the crack direction
was easily determined (Fig. 4.4-64).

High Resin Content. DCB, ENF, and N4ptT fractures of samples with higher than
normal resin content were tested.

Interlaminar Mode [ Tension. Visual observation of the fracture surface revealed a

typical smooth, glassy fracture commonly seen in interlaminar Mode I tension specimens
at RT/dry condition as shown in Figure 4.4-65. At higher magnification, rivermarks and
resin mircoflow were seen. The SEM analysis revealed a fracture surface with
rivermarks as typically observed in RT/Dry specimens (Fig. 4.4-66).

Interlaminar Mode II Shear. Visual observation of the fracture surface revealed a
flat, milky appearance when held at an angle to the light. Unlike the low resin content
specimens, these specimens showed complete wet-out at the resin/matrix interface
(Fig. 4.4-67).

The SEM analysis revealed a fracture surface typically observed in RT/dry

specimens (Fig. 4.4-68).

Translaminar Mode I Tension. Visual and optical observations revealed large fiber
pullout regions due to uneven distribution of the added resin film. SEM fractograph
showed a cohesive resin fracture at the fiber/matrix interface due to the excessive resin

content. The radial patterns on the fiber ends were clearly seen (Fig. 4.4-69).

Low Resin Content. DCB, ENF, and N4ptT fractures of samples with low resin
content were examined as with other processing deficient samples.

Interlaminar Mode I Tension. Visual observation of the fracture surface revealed

the smooth, glassy fracture surface typical of interlaminar Mode I tension specimens at
RT/dry. The only noticeable difference was the fiber splinters resulting from the
insufficient degree of resin wet-out at the fiber/matrix interface. At higher
magnification under the optical miecroscope, a typical region of low resin content showed
lack of fracture features such as rivermarks to indicate the overall crack direction (Fig.
4.4-70).
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Figure 4.4-64. SEM Fractographs of Translaminar Tension Fracture of Overcured Specimen
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Figure 4.4-67. Optical Photomicrographs of Interlaminar Mode Il Shear, 0/90 Fracture of High Resin Content Specimen
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The SEM analysis revealed a featureless fracture surface (Fig. 4.4-71).

Interlaminar Mode II Shear. Visual observation of the fracture surface revealed a
flat but milky appearance when the sample was held at an angle to the light. In some
locations on the specimen, there were dark spots indicating voids caused by resin
starvation between plies. Although the hackles were present, fine details were difficult
to resolve (Fig. 4.4-72).

The SEM revealed a fracture surface with features typically seen in RT/dry
specimens, such as hackles and scallops. However, between these hackles, there were
many valleys which seemed to have been caused by resin starvation (Fig. 4.4-73).

Translaminar Tension. Visual, optical, and SEM observations revealed localized
fiber pullouts; the protruding fibers were unevenly distributed on the fracture surface.
The fiber/matrix adhesion seemed poor as evidenced by the lack of resin fracture along
the sides of the fibers. However, the radial patterns essential for determining the erack

direction were clearly seen (Fig. 4.4-74).

4.4.1.4 Product Forms

Fabric. Interlaminar Mode I tension and Mode II shear and translaminar tension test
were conducted on carbon/epoxy fabric.

Interlaminar Mode I Tension. Visual inspection revealed é fiat, smooth surface.
However, because of the weave pattern, the fracture surface appeared less reflective or

glassy than unidirectional tape.

Optical examination revealed rivermarks and resin microflow especially in the
resin-rich regions at the nodes where weaves overlap (Fig. 4.4-75).

SEM analysis confirmed the optical results. However, because the rivermarks in a
single region are not always consistent with those in other regions, several resin-rich
regions should be observed before making any conclusions on the crack propagation
direction (Fig. 4.4-76).

Interlaminar Mode II Shear. Visual inspection revealed a dull, rough surface.
Optical examination showed hackles not only at the nodes, but also at other regions of
the weave (Fig. 4.4-77).

SEM analysis confirmed the optical results. The hackles were in various shapes and
sizes (Fig. 4.4-78); as with the fracture surface created with a tape layup, these hackles

are not indicators of crack propagation direction.
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Figure 4.4-72. Optical Photomicrographs of Interlaminar Mode 1| Shear, 0/90 Fracture of Low Resin Content Specimen
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Translaminar Tension. Visual inspection revealed a fracture surface with protruding

fibers. There seemed to be resin-rich regions between the fiber bundles.

SEM analysis showed resin-rich regions between protruding fiber bundles. The
fiber/matrix adhesion was good. Radial patterns on the fiber ends were observed (Fig.
4.4-79).

Filament Wound. A filament wound carbon/epoxy specimen was subjected to DCB,
ENF, and translaminar tension tests.

Interlaminar Mode I Tension. Visual observation of the fracture surface revealed a

flat, glassy surface similar to that of the unidirectional tape specimen under the same
conditions. There was evidence of loose fibers resulting from the low resin content of
the AS4/3501-6 prepreg tow.

In optical photomicrographs fracture features were very difficult to identify due to
the low resin content. However, at high magnification, fine rivermarks were observed
(Fig. 4.4-80).

These fine rivermarks were also observed under SEM. Due to the lack of resin
surrounding thiz fibers, the fiber/matrix adhesion was rather poor as evidenced by the
stray fibers on the fracture surface (Fig. 4.4-81).

Interlaminar Mode Il Shear. Visual observation revealed a rough, dull fracture

surface similar to that of the unidirectional tape specimen under the same conditions.
Under optical microscopy, hackles were observed only at lccations where there was
a sufficient amount of resin between the fibers (Fig. 4.4-82). The hackles observed
under the SEM were very small due to the low resin content. The fiber/matrix adhesion
seemed to be poor at resin-starved regions as evidenced by bare fibers (Fig. 4.4-83).
Translaminar Tension. The fiber/matrix adhesion was good and radial patterns

commonly observed in carbon fibers were present on the fiber ends. From these
patterns, it was possible to obtain the overall crack propagation direction (Fig. 4.4-84).
Stitch (CAI). An AS4/35601-6 specimen was stitched with Kevlar 29. Fractographs
of the specimen tested under CAIl were documented. The ply-by-ply erack propagation
showed an irregularly arranged, complex pattern (Fig. 4.4-85). The damage around the
Kevlar 29 stitch was composed of interlaminar and translaminar cracks (Fig. 4.4-86).
Crack mapping of the delamination near the vieinity of the impact site was

impossible because of the complex fracture mode.
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Figure 4.4-80. Optical Photomicrographs of Interlaminar Mode | Tension, 0/0 Fracture of a Filament Wound Specimen
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Figure 4.4-82. Optical Photomicrographs of Interlaminar Modell, 0/0 Fracture of Filament Wound Specimen
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86. Damage Around Keviar 29 Stitch

Figure 4.4-
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4.4.2 Task 3B: Other Systems

Carbon/PEEK, carbon/PMR-15, carbon/8551-7, boron/epoxy, Kevlar/epoxy, and ‘
glass/epoxy were evaluated. The material systems mentioned are currently or soon to be
in service. The material systems were divided into two categories, carbon fiber based

materials and epoxy based materials.

4.4.2.1 Carbon-Fiber Based Materials.

Carbon/PEEK (AS4/APC-2), carbon/PMR-15 (Celion 3000 8H Satin), and
carbon/multi-phase resin (IM7/8551) were evaluated under the carbon-fiber materials
category.

Carbon/PEEK, (AS4/APC-2). Interlaminar Mode I and II fractures were examined
after exposure to RT/dry and 270°F/wet conditions.

Interlaminar Mode [ Tension. RT/Dry. Optical examination revealed a dull, matte
interlaminar surface, unlike the reflective Mode I fractures observed in carbon/epoxy.

SEM examination revealed features similar to ductile overload dimples observed in
metals (Fig. 4.4-87). These were found in radial patterns due to the influence of
semi-crystalline formations, termed spherulites, within the PEEK matrix. The
fractographs are indicative of a fast, brittle fracture. A slow fracture is characterized
by high ductility, No overall crack propagation direction could be determined.
Fiber/matrix adhesion was good.

Interlaminar Mode I Tension, 2709°F/Wet. Optical examination revealed a white

fracture surface due to the presence of ductile tufts of material. SEM examination
revealed ductile matrix fracture, showing the small tufts of matrix which were drawn
perpendicularly to the fracture plane (Fig. 4.4-88). This morphology is typical of a slow,
ductile fracture in PEEK matrix. Overall crack propagation direction could not be
determined. Fiber/matrix adhesion was good.

Interlaminar Mode II Shear, RT/Dry. Optical examination revealed a distinct
transition point from the Mode I precrack to Mode Il shear propagation. SEM
examination revealed ductile shear dimples similar to those observed in metals
(Fig. 4.4-89). Unlike hackles, these features make it possible to determine the relative
shear directions of the mating fractures. Resin-rich areas between plies revealed mixed

features of ductile overload and ductile shear. Fiber/matrix adhesion was good.
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Interlaminar Mode II Shear, 270°F/Wet. Optical examination of the fracture did not
reveal a distinct transition from the Mode I precrack to Mode II shear propagation. SEM

fractography revealed hackles covered with features similar to ductile overload dimples
(Fig. 4.4-90). The direction of crack propagation could not be determined from these
features. However, the axis of propagation indicated by shear hackles was consistent
with the mechanically induced crack direction. Fiber/matrix adhesion was good.
Translaminar Tension, RT/Dry. Optical examination revealed a planar fracture with

typical fiber pullout. Only a thin compressive zone (approximately 6% of the fracture)
was observed on the end opposite the notch. SEM examination revealed radial patterns
on fiber ends which indicated a propagation direction consistent with the mechanically
induced crack direction (Fig. 4.4-91). Fiber/matrix adhesion was good.

Translaminar Tension, 270°F/Wet. Optical examination revealed a relatively flat

fracture with no significant buckling on the compressive surface. The fracture was
almost exclusively tensile, and significant fiber pullout was observed. SEM fractography
revealed small bundles of fibers all in the same plane (Fig. 4.4-92). Radial patterns
found on fiber end fractures indicated crack growth consistent with the mechanically
induced crack growth direction. Fiber/matrix adhesion was good.

Translaminar Compression, RT/Dry. Optical examination revealed a rough surface.

Compressive fracture occurred on only 30% of the surface. Fiber end fractures in the
compressive portion of the fracture revealed a tensile zone, a compressive zone, and a
neutral axis on each fiber end (Fig. 4.4-93). Matrix ductility was observed between fiber
end fractures. As in the translaminar tension specimen, the matrix fracture in the 390
degree plies revealed ductile overload dimples. Fiber/matrix adhesion was good.
Translaminar Compression, 2709F/Wet. Optical examination revealed approxi-
mately 50% compressive and 50% tensile fracture. SEM examination of the compressive
zone revealed fiber end fractures having tensile, compressive, and neutral zones typical

of compressive fractures (Fig. 4.4-94). Fiber/matrix adhesion was good.

Carbon/PMR-15 (Celion 3000 8H Satin). Interlaminar Mode I and II and translaminar
tension and compression specimens were exposed to RT/dry and 5009F/dry conditions.

Interlaminar Mode I Tension, RT/Dry. Optical examination revealed a reflective
interlaminar surface. SEM fractography of tows perpendicular to the crack propagation
direction revealed rivermarks indicating propagation consistent with the mechanically
induced crack direction (Fig. 4.4-95). Fractography of tows parallel to the erack
propagation direction revealed a mixed-mode morphology with poorly formed hackles
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indicating shear propagation due 1o the iaflluenece of fabwrie rei:rfovecnent. Frectagreaph)
of resin-rich regions Detween lows revesled propagelioa ‘omard ihe center of t(he
adjacent tow, regardiess of direction. Fiber/matirin a®resion aas DOOr, as mast {1bers
were bare.

Interlaminar Mode | Tension, 300°F/Dry. Opticsl eramination rerealed & siighlly
reflective interlaminar surface. SEM fractography of lows perieadicular 10 1he craca
propagation direction revealed rivermaris ingicaling Hupageiica ie Jirectioans bHolh
consistent with and opposite 0 the overall propagatioa Jirecltion (Fiyg &.4-9)
Fractography of tows parsilel to the crack propagetion direeci:on revesiad o feaiureiess
matrix {racture having the apperance of shear (ailure. Fider/malris adheiion was good.

Interlaminar Mode !l Shear, RT/Dry. Optical examination revesied ¢ matte surface
corresponding to the shear (racture. SEM (ractogrephy of ‘ows Dareliel 1o ithe
mechanically induced crack revealed hackles and scailops, indicetive of shwar freciure
(Fig. 4.4-97). Practography of tows perpendicular 'o creck propagelion revesled s
mixed-mode morphology. The clesvage {estures sssociated with Ihe otwerved heckles
did not indicate crack propagation in the induced direction. The {ider/matris sChesion
was poor.

interlaminar Mode [l Shear, 300°F/Dry. Optical magnification of 1he interlaminer
shear fracture did not revesl the regular dull, matte surface or milky white appesrance
associated with Mode [l shear (ractures. SEM (ractography revesied hackies and scallops
on both the parallel and perpendicular tows (Fig. 4.4-98). Creck propegstion direction
could not be determined. Fiber/matrix adhesion was good.

Translaminar Tension, RT/Dry. Visual examination revesied tensile feilure. SEM
fractography of the tensile portion revealed fiber end festures with fan patterns showing
an overall propagation direction consistent with the mechsnically induced crack
direction (Fig. 4.4-99). Rivermarks and resin microfliow in the resin-rich sreas of the
tensile zone also indicated crack growth direction consistent with the mechanicslly

induced crack direction.

The carbon/PMR-15 specimens used for the transiaminar tension and translaminar
compression test were produced from quasi-isotropic laminates, unlike the 0/90 degree
specimens used for the AS4/APC-2 and the IM7/8551 tests. Therefore, the carbon/PMR-
15 specimen fractures reveal 45 degree plies not present in the other fractures.
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A substantial amount of 43 degree [iDers were obierved proirading from 1he
surfaces. Fibers oriented at +43 degree were observed from oae fractiure aurface and
-45 degree fibers from the mating fracture surface. This congditiof s capocied with
tensile loading.

Macroscopically, the (ractures appeared jagged Gue 10 I8¢ proiruding pliea. The
most outstanding feature was the multitude of incividual fiders protruding from 1he
tensile loading. Due to the high fider content utilized in cardoa/PMR 13, fiver/mairia
adhesion was poor and extensive fiber pullout was obwerved.

Translaminar Tension, $00°P/Dry. Optical examination reveslod & rough.
translaminar surface. Only a quarter of the fracture was tensile, wilh the remainder
being compressive. SEM fractography of the tensile region revesied smail bundles of
fibers on the fracture plane, due to fiber pullout, making determinstion of & propage!ion
direction difficult (Fig. 4.4-100). However, the direction indicsted by redial pstlerns
found on fiber end fractures was consistent with the mechanically induced creck growih
direction. Microbuckling and typical compressive {iber end (ractures were observed on

the compressive portion of the fracture. Fiber/matrix adhesion was fair.
Translaminar Compression, RT/Dry. Optical examination reveaied both tensile and

compressive regions, as was found on the translaminar tension specimens (Fig. 4.4-101).
The compressive zone in this specimen was approximately a third of the fracture surface
with the remainder being tensile. The compressive loading appeared to have initiated s
tensile crack on the opposite surface which propagated toward the notch and intersected
the compressive damage; SEM examination of the tensile portion revealed fiber end
fractures that indicated propagation toward the opposite side. (In these specimens, the
specified mechanically induced crack direction is from the notch outward). The
compressive region revealed a debris-covered surface with fiber end fractures containing
both tensile and compressive zones. Resin-rich fractures in the tensile zone revealed
rivermarks, indicating propagation opposite to the mechanically induced crack direction,
as expected.

As in the translaminar tension specimens, plies oriented at 45 degree were observed
protruding from the fracture surface. However, plies oriented at both +45 and -45 were
observed on each fracture surface, with the +45 degree plies dominating. Delaminations
were observed in these protruding plies. 4

Macroscopically, the fractures were jagged due to protruding plies. The most
outstanding features were the delaminated 45 degree plies which gave the appearance of
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strips of material. Fiber/matrix adhesion was poor, but fiber pullout was less pronounced
than in the translaminar tension specimens.
Translaminar _Compression, 500°F/Dry. Optical examination revealed a rough,

partly compressive and partly shear fracture. Compressive failure was found on
approximately half of the fracture and was located on the notched portion (as intended).
Compressive fracture occurred predominantly on the 0 and 90 degree plies, while the
shear portion of the fracture occurred on the 45 degree plies. SEM examination of the
compression portion of the fracture revealed fiber end fractures which had been
obliterated by fracture debris (Fig. 4.4-102). Microbuckling was observed. Hackles were
found on the shear portion of the fracture. Fiber/matrix adhesion was poor.

Similarities between the carbon/PMR-15 and the AS4/3501-6 specimens examined
under Tasks 2 and 3A include the presence of rivermarks and microflow in the resin-rich
fracture, fan patterns on the fiber end fractures in the tensile zone (indicating crack
growth direction), and the flat, debris covered surfaces on compressive failures.

The most striking difference, due to the presence of 45 degree plies, was the
protruding off-axis fibers in the carbon/PMR-15 composite, which produced a more
jagged surface. The relative sizes of the tensile and compressive zones on the fracture
surfaces were strikingly dissimilar.

Muitiphase Carbon/Resin (IM7/8551). Tests were conducted on IM7/8551 at RT/dry
and hot/wet conditions.

Interlaminar Mode I Tension, RT/Dry. Optical examination revealed a smooth,

reflective, mostly interlaminar fracture surface. Between plies, the epoxy and
toughening phases were distinguishable. SEM fractography revealed rivermarks between
fibers that had a longitudinal component consistent with the mechanieally induced crack
direction (Fig. 4.4-103). Fractography of the resin-rich region between plies revealed
rivermarks in the epoxy, propagating around toughener particles. These rivermarks
indicated crack growth consistent with the mechanically induced crack direction. The
toughener particles did not reveal indications of crack growth direction. Some evidence
of ductile fracture was observed adjacent to the toughener particles. Fiber/matrix
adhesion appeared to be good.

Interlaminar Mode I Tension, 2709F/Wet. Optical examination of the fracture
revealed a reflective surface, typical of Mode I fractures. SEM examination revealed

rivermarks between fibers indicating propagation consistent with the mechanically
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induced crack direction (Fig. 4.4.-104). Rivermarks found in the resin-rich areas
between plies also indicated a propagation consistent with the mechanically induced
crack propagation. Fiber/matrix adhesion was good.

Interlaminar Mode Il Shear, RT/Dry. Optical examination revealed typical Mode Ii
shear fracture features. SEM fractography revealed hackles also typical of Mode II
propagation (Fig. 4.4-105). Resin-rich regions between plies contained rivermarks
indicating crack propagation in a direction consistent with the mechanically induced
direction. These rivermarks are apparently the result of cracking through the ply due to
offset crack planes. Bare fibers and matrix separation are normal for a shear failure.

Interlaminar Mode Il Shear, 2700F/Wet. Optical examination revealed a typical

Mode [I shear fracture. SEM examination of the fracture revealed hackles and scallops
typical of Mode II fractures (Fig. 4.4-106). The direction of mechanically induced crack
propagation could not be determined.

Translaminar Tension, RT/Dry. Optical examination revealed a rough surface due to

typical fiber pullout. SEM fractography revealed radial patterns on the fiber ends
indicating a resultant crack direction consistent with the mechanically induced direction
(Fig. 4.4-107). Fiber/matrix adhesion was good.

Translaminar Tension, 270°F/Wet. At 270°F/wet, the toughened epoxy became very

ductile. The matrix was not stiff enough to support the fiber system. Rather than
producing a translaminar fracture as intended, these specimens buckled to the extent
that the test could not be continued. Therefore, fractography could not be performed.

Translaminar Compression, RT/Dry. Optical examination revealed a rough surface
comprising approximately 55% compressive failure and 45% tensile failure. Large
sections of the 0 degree plies were observed protruding from the compressive portion of
the fracture surface. The individual fiber end fractures revealed a compressive zone, a
tensile zone, and a neutral axis (Fig. 4.4-108). Fiber end fractures in the generated
tensile crack revealed radial patterns which indicated crack direction consistent with the
mechanically induced tensile crack direction. Fracture along the 90 degree plies
produced some rivermarks with a longitudinal component also indicating ecrack
propagation direction consistent with the mechanically induced direction. Fiber/matrix
adhesion was good.

Translaminar Compression, 270°F/Wet. Optical examination of the fracture

revealed approximately 70% compressive and 30% tensile zones. SEM examination of
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the compressive region revealed typical fiber end fractures having tensile, compressive,
and neutral zones (Fig. 4.4-109). The tensile portion of the fracture revealed substantial
fiber pullout and it was not possible to examine enough fiber ends on a single plane to
determine crack growth direction. Fiber/matrix adhesion was poor, as evidenced by the
fiber pullout.

4.4.2.2 Epoxy-Based Materials

Boron/epoxy, Kevlar/epoxy, and glass/epoxy materials were evaluated. The
materials were selected due to their current usage in production mode. Keeping the
epoxy constituent constant and changing only the fiber type permitted determination of
the effects of various fiber types on fracture surfaces.

Boron/Epoxy (Avco 5505/4). Various types of fractures produced under RT/dry and
2700F/wet conditions were examined.

Interlaminar Mode I Tension, RT/Dry. Visual observation of the fracture surface

revealed five distinguishable planes of fracture leading to failure at the outer ply. The
overall fracture surface span was only 2.5 inches from the crack initiation site. The
boron/epoxy laminate exhibited a more complex crack path than those in carbon and
glass fiber-reinforced epoxy laminates, mainly due to the resistance of the boron
filaments to the crack front.

The fracture feature most frequently observed under the optical microscope was a
resin flow line indicating the overall crack growth direction. This feature was similar to
a rivermark (Fig. 4.4-110). The reflection of light from the boron-tungsten filament
made it difficult to see some of the fine details of the critical fracture features.

SEM analysis showed both rivermarks and resin microflow lines on the fracture
surface (Fig. 4.4-111). This indicated that the crack direction could be identified from
these microscopic features.

Interlaminar Mode I Tension, 270°F/Wet. Visual examination revealed a fracture

surface on only one or two stepped planes. This was in contrast to the RT specimen,
which fractured over many stepped planes. The 270°0F/wet condition made the resin
ductile and prevented a multiple-plane fracture. The optical photomicrograph showed
resin microflow lines similar to those observed in the RT/dry specimen (Fig. 4.4-112).
Figure 4.4-113 shows the SEM fractographs of the interlaminar Mode | tension
specimen exposed to humidity and tested at 2709F. The fracture surface showed
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rivermarks in some regions. The major difference between the RT/dry and 270°F/wet
specimens was the latter's very poor adhesion at the fiber/matrix interface.
Interlaminar Mode Il Shear, RT/Dry. Under visual examination, the fracture surface

was dull and milky due to the formation of hackles. This appearance was similar to that
observed in previous work on the carbon-fiber reinforced epoxy system. Due to
difficulties in creating a large area of interlaminar Mode Il shear fracture surface for
this material system, we were unable to provide a macrophotograph of the specimen.
However, SEM analysis was performed on the available specimen. The fracture feature
revealed resembled the hackles typically observed in the model material system,
AS4/3501-6 (Fig. 4.4-114).

Interlaminar Mode II Shear, 2709F/Wet. Visual examination revealed a fracture

surface delaminated at various plies. Hackle formations were observed under the optical

microscope (Fig. 4.4-115).

Figure 4.4-116 illustrates the SEM fractograph of the interlaminar Mode Il shear
specimen exposed to humidity and tested at 270°F. The fracture surface showed hackles
throughout the specimen. Poor fiber/matrix adhesion was observed, which is typical for
shear fractures.

Translaminar Tension, RT/Dry. Visual inspection revealed a region of numerous

protruding fibers. The protruding fibers exhibited a white, powder-like texture and the
fibers perpendicular to them were silvery.

The SEM analysis showed that the adhesion at the interface between the boron
fibers and the epoxy matrix was poor at the time of the fracture. This was also
evidenced by the fiber pullouts (Fig. 4.4-117).

Unlike those in glass and carbon fibers, the radial patterns on the boron fiber ends
initiated at the tungsten core/boron interface (Fig. 4.4-118). This phenomenon may be
due to the lower interfacial shear strength of the tungsten core/boron interface in
comparison with the boron fiber/epoxy interface. The fracture features radiating from
the center of the boron-tungsten fiber could not be used to determine the crack
propagation direction. Cracks in glass and carbon fibers typically initiate at the outer
surface and propagate from one fiber to another, and the average of the individual crack
directions indicates the overall crack direction.

Translaminar Tension, 2709F/Wet. Visual examination revealed a fracture surface

with numerous protruding fibers. Under the wide-field macroscope, it was evident that

D180-31996-1
202




Axodz/uoiog ul e:moBI4 06/0 YESYS || 8POW Jeulweusu) ‘Aig/eimesedwe) wooy jo sydeibooeid W3S ‘tii-p'y ainbiy

X000°} (@ un eesBep 0 X052 () un easbep 0

D180-31996-1

X0S (e) i ea16ep o€

LW8 200 10091 ___BSX AXP
8 -22- (T LUNDDT dWDD 49 966188
, FJHqu A 30 mmmamzmuwoov

uonoaNp Hoes
peonpu; Ajjesiueyoey

eJnoey Xujew W
juewejy uoioq g

:pusben

203




Sttty amgry

ampory
psjjonuos
$0 pugy

uoiba, Joug)s
ORI 34

Uotiossip yimos6 oesn
Paonpuy b_mu._cmcows_

D180-31996-1

204




Axodz/uoiog ui 81moki4 JBaYS || SPOW JRUNLBLIBIU| 18M/H 042 0 sydeibojoeid W3S ‘91 L-t'+ einbi4

X000'1 (2) ui @a16sp Gy
wAo .M. f—— -
THABLONOATAYIR E:

ey

2l1o0s 1ug AdR1 BB I x

.,).ﬁ;4m«_
, Mw | umw«wqqﬂum_

-

uogoap Yoeuo
paonput Ajjediueyoep

X0s¢e

X0S

-2-7-1-1 SN

Wa

(@

in esibap Gp

D180-31996-1

205




Axod3/u0108 Ul 81MokI4 UOISUB | JBUNLIEISUB) |

!

uoII0a.Ip YorID
paonpul Ajjeaueyospyy

‘Migyeinmieisadwa ) wooy jo sydeibojoei4 w3s Z1LL-p'y 8nbly
wmeabep oy . X00v

BAPIX ANPT

L4 19é60-¢8
40-8¢ L1dN

' VH 7

9068
21

-¢8
LdN

D180-31996-1

06

B




WL 8a.ba( o 1e umoys ‘Axod3z/uoli0g Ul 8INjdE.I4 UOISUS] Jeunelsukl] ‘Aig/ainjeiadwa ] wooy Jo sydeibojori4 W3s ‘8L i-v'y ainbi4

X00§ (0 | 89168p 0 X001 (a) 1 8aibap 0

cTopoe 1W8 AABE paSx cooos 1WG AdBE

I (W 4 O O T weioos [ ]

820188702 >. 43/ HOHOEMIUTES o2 v I .8£0188 0> d3/NOYD4A. d
oF . S bi-8"a0 Ild¥

#08 507 48

X0e (e) 1 @a1b6ap 0

———

uonoaIIp HorId
paonpu Ajjesiueyospy

ainoes xujew W
ainoey pua jeqy 4
nojind Jeqy  d

:puaban

D180-31996-1

207




the fracture was fiber-dominated. The fracture surface exhibited many holes in the
matrix, indicative of extensive fiber pullout (poor fiber/matrix adhesion). Additionally,
the fibers pulled away from the matrix were much longer than those in the RT/dry
specimen. This also indicating poor fiber/matrix adhesion (Fig. 4.4-119).

The resin around the boron filaments exhibited such features as rivermarks that
could be used for crack mapping. The fracture features on the fiber ends appeared
similar to the features observed on the translaminar tension RT/dry specimen. The
radial pattern could not be used to determine the overall crack direction. The fiber
surfaces were smooth and there were no traces of residual resin.

Further studies may need to be conducted to determine whether radial patterns on
the boron fiber ends or the resin fracture features around the boron filament are usable
for crack direction indication or crack manping.

Translaminar Compression, RT/Dry. Visual observation revealed numerous

protruded boron-tungsten filaments. SEM analysis shown in Figures 4.4-120 and 4.4-121
confirmed the visual result. Unlike the glass and carbon fibers, the boron-tungsten
fibers exhibited similar fracture features in both tension and compression specimens.
This may be due to the higher ductility of the boron-tungsten fibers in comparison with
the glass and carbon fibers. This eliminates the microbuckling effects (from
' ecompression) ‘typically exhibited in fibers with higher stiffness. The neutral axes
observed on the glass and carbon fiber ends were not present on the boron-tungsten
translaminar compression specimen tested under RT/dry condition.

Translaminar Compression, 270°F/Wet. Visual examination revealed a fracture

surface with numerous protruding fibers, similar to the fracture surface of the tension
specimen. The ends of the boron filaments exhibited radial patterns similar to those of
the translaminar compression RT/dry specimen (Fig. 4.4-122). Boron fiber pullouts
exhibited little residual resin on the fiber due to weak fiber/matrix adhesion; also, the
boron fiber surface was not as smooth as is typical of carbon fiber (Fig. 4.4-123). This is
due to the chemical deposition process of boron onto the tungsten core. The neutral axes
typically observed on glass and carbon fiber ends, a result of microbuckling, were not
present on the boron-tungsten translaminar compression specimen tested under
2700F/wet conditions.

Kevlar/Epoxy (49/F155). Fractures of various types were induced under RT/dry and
hot/wet conditions.
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Interlaminar Mode I Tension, RT/Dry. The RT/dry interlaminar fracture lacked
rivermarks commonly observed in other epoxy-based interlaminar Mode [ tension

fractures (such as in glass or carbon-fiber reinforced specimens). There were no fracture
features at the node or the center of the weave that could be used for determining the
crack propagation direction (Fig. 4.4-124 and 4.4-125). The fiber/matrix adhesion was
poor.

Interlaminar Mode I Tension, 2009F/Wet. Visual examination of the 200°F/wet
interlaminar Mode [ tension fracture revealed a smooth, shiny surface with patches of
flakey resin on the fracture. The fractures of the RT/dry and 200°F/wet specimens
appeared almost identical except for an apparent degradation in the patches of flakey
resin on the 200°F/wet fracture. The fiber/matrix adhesion was poor as evidenced by
the smooth fracture with fiber imprints. The difference between the RT/dry and the

2000F/wet specimens was the greater extent of fiber pullouts and fiber imprints in the
2000F/wet. This indicated weaker fiber/matrix adhesion than in the RT/dry specimen
(Fig. 4.4-126).

Interlaminar Mode II Shear, RT/Dry. Visual observation revealed a surface with

Kevlar fibers pulled away from the resin matrix. Optical examination did not provide
much information due mainly to the translucence of the Kevlar fibers.

SEM analysis showed hackle formation and an adhesive-type fracture evidenced by
the clean and smooth imprints of the fibers (Fig. 4.4-127).

Interlaminar Mode II Shear, 2009F/Wet. Visual examination of the interlaminar

Mode II shear 200°F/wet fracture revealed a dull, rough surface similar to that of the
RT/dry fracture. In addition, there were large tears in the fracture surface from what
appears to have been a high energy fracture (Fig. 4.4-128). The energy of this fracture
may have been due to the increase in toughness of the resin matrix due to the moisture
exposure. The hackles were formed in a duectile fashion evidenced by the taffy-pull type
fracture (commonly observed in metal fractures). This type of microscopic fracture
behavior is due to an intrinsic characteristic of the epoxy matrix, which becomes more
ductile when exposed to elevated temperature and humidity. The fiber/matrix adhesion
was poor as evidenced by the smoothness of the resin fracture and the fiber imprints. A
greater extent of fiber pullout (due to weak fiber/matrix adhesion) and more distinet
hackles were observed in the 2000F/wet specimen than in the RT/dry specimen.
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Translaminar Tension, RT/Dry. Visual and optical observation revealed a broom-like

fracture surface indicating extensive fiber-dominated fracture. Under SEM, the
fiber/matrix interface showed a very smooth surface and the fiber ends showed no sign
of any crack direction (Fig. 4.4-129).

Translaminar Tension, 200°F/Wet. Figure 4.4-130 shows the SEM fractographs of a
200°F/wet translaminar tension fracture exhibiting a similar appearance to the RT/dry

fracture, with no observable features, to differentiate environmental effects.

Both RT/dry and 200°F/wet specimens showed broom-like fibrillation of the Keviar
fibers. The Kevlar fibers failed differently than glass and carbon fibers. The radial
pattern commonly observed in glass and carbon fibers, which provides information to
determine the overall crack direction, was absent. The fiber/matrix interface showed a
very smooth surface with poor adhesion in both eases.

Translaminar Compression, RT/Dry. Visual, optical, and SEM observations revealed

a broom-like fracture surface with the protruding fibers twisted in all directions
(Fig. 4.4-131).

Translaminar Compression, 200°F/Wet. Figure 4.4-132 shows the SEM fractograph
of a translaminar Mode I compression, Kevlar/epoxy, 2000F/wet specimen. As in the
translaminar Mode [ tension specimen, the RT/dry and the 200°F/wet translaminar
compression specimens exhibited similar fracture appearances and there was no
distinguishable feature to differentiate the environmental effects. The debris on the
fibers was mostly due to the wet cutting of the specimen.

Fiberglass/Epoxy (Hexcel E-glass/F155). RT/dry and hot/wet fractures of various
types were examined visually and microscopically.

Interlaminar Mode [ Tension, RT/Dry. Visual observation of the fracture revealed a

smooth, glassy surface. Optical photomicrographs were not taken because of the
transparency of the fiberglass/epoxy. Cleavage markings, (rivermarks) typically seen in
Mode I tension fractures of carbon fiber reinforced epoxies were observed under the SEM
(Fig. 4.4-133). These features were usually observed at the nodes where the weaves
overlap one another. The fiber/matrix adhesion appeared to be poor at some locations.
This is due to the low inherent interfacial shear strength at the fiberglass/epoxy
interface.

Interlaminar Mode 1 Tension, 200°F/Wet. Visual inspection of the 200°F/wet
fracture revealed a much rougher surface than was observed in the RT/dry specimen.
The specimen exhibited more resistance to breakage than the RT/dry specimen, as
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Figure 4.4-130. SEM Fractographs of 200 F/Wet, Translaminar Tension Fracture in Keviar/Epoxy
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Figure 4.4-132. SEM Fractographs of 200 F/Wet, Translaminar Compression Fracture in Keviar/Epoxy
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evidenced by specimen end deflection and incomplete fracture into two halves. The
resistance of the 200°F/wet specimen to fracture may be due to the increased toughness
of the resin matrix due to moisture exposure.

Figure 4.4-134 shows the SEM fractographs of the interlaminar Mode | tension,
200°F/wet specimen. Fiber/matrix adhesion was poor as evidenced by the smoothness of
the fiber surface. Unlike the RT/dry specimen, this specimen did not exhibit well-
defined rivermarks indicating the crack direction. Instead, the surface showed taffy-pull
hackles commonly seen in ductile resin matrices such as thermoplastics.

Interlaminar Mode II Shear, RT/Dry. Visual observations of the fracture revealed a
rough, dull surface. There was evidence of surface ripples, running parallel to the
direction of the crack growth, which could be used to identify shear mode fracture
during macroscopic evaluation. This feature was not seen in any other material system

evaluated in this program. The surface ripples were observed only under oblique lighting.

SEM analysis (Fig. 4.4-135) revealed a rough fracture surface consisting of large
numbers of hackles, which appear similar to the platelets seen in Mode II shear fractures
of carbon fiber reinforced epoxies. There was poor adhesion of the fiber/matrix
interface at some locations, is due to the low inherent interfacial shear strength.

Under SEM, the fracture surface appeared very rough and hackles were observed
throughout the specimen. Although the Mode I tension fracture showed a cohesive type
fiber/matrix fracture in the Mode Il shear fracture there was little resin debris on the
fiber/matrix interface.

Interlaminar Mode 1l Shear, 200°F/Wet. Visual examination of the fracture revealed

a rough, dull surface. The surface exhibited more of the white powder-like texture
feature than the RT/dry specimen. The macroscopic ripples seen in the RT/dry specimen
were also seen in these 200°F/wet specimen.

Figure 4.4-136 shows the SEM fractograph of the fracture surface which appeared
rough and showed hackles as observed in the RT/dry specimen. These hackles were much
larger, but fewer in number than those seen in the RT specimens.

Translaminar Tension, RT/Dry. Visual and optical observation revealed a rough

topography with protruding fibers of different lengths and directions (Fig. 4.4~137). The
surface of the fiber/matrix interface was smooth due to the fibers being pulled away
from the matrix. There was evidence of fiber dominated fracture in the large
percentage of fiber pullouts. Similar to the carbon fibers, the radial patterns were
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observed on the glass fiber ends and can be used to determine crack growth direction.
Translaminar Tension, 200°F/Wet. The translaminar tension specimen buckled away

from the notch at the reaction points. No fractography was performed on this specimen.
Translaminar Compression, RT/Dry. Visual and optical observations revealed a

surface with uniform protruding fibers. The fiber/matrix interface showed good adhesion.
Figures 4.4~138 and 4.4-139 show the SEM fractographs. A neutral axis line dividing the
tension and compression regions on the fiber ends was observed.

Translaminar Compression, 200°9F/Wet. Optical observation of the 200°F/wet

specimen revealed a fracture surface like that typically seen in RT/dry translaminar
compression specimens. The compression damage occurred in the region just outside of
the notch. The typical fracture of a translaminar compression specimen exhibited a flat
surface with "chop" makes on the fiber ends (Fig. 4.4-140). Compressively fractured
fiber ends show two distinct regions separated by a neutral axis line. This line does not
represent any kind of ecrack direction (Fig. 4.4-141).
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5.0 TASK 4: DEVELOPMENT OF DATA FORMAT

5.1 OBJECTIVE

The objective was to develop the Failure Analysis Collection and Tracking System
(FACTS) Input Sheet. The FACTS input sheet ensured comprehensive data collection,
and facilitated data storage for future computer tracking and analysis.

5.2 APPROACH

The approach was to produce comprehensive data collection formats so that
pertinent physical data (such as background information, analytical methods used, and
results) could be preserved, while keeping the format flexible. Multi-tiered data formats
collect specific analytical data, supportive raw data, and detailed fracture analysis
results. Each data sheet in the series contained the following information: background
(part specific information); method used (analytical methods and instrument setting);
results (presentation of (raw) data, observations, and conclusions); and keywords (words
summarizing pertinent information for computer tracking and retrieval system). The
Task 4 flow diagram is shown in Figure 5.2-1.

5.3 METHODS

Data collection formats were developed using input from the Air Force, Boeing, GE,
current handbooks, and requirements for Government reporting methods. Six formats
were provided to the Air Force Project Engineer (AFPE) for review. The six formats
consisted of one overall Failure Analysis Collection and Tracking System (FACTS) input
sheet, and five-tiered breakdown data input sheets specifically for macroscopic
fractography, microscopic fractography, nondestructive evaluation (NDE), materials
characterization, and stress analysis.

The FACTS input sheets were developed for use in creating a failure analysis report.
Following AFPE approval of the proposed FACTS sheets, the formats were used for
reporting of Task 6, Verification of Composites Failure Analysis Logic Network (FALN),
to ensure data organization and completeness and to allow program information to be
efficiently included in the handbook.

5.4 RESULTS

The approved FACTS sheets are shown in Appendix A.
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6.0 TASK 5: DOCUMENTATION OF MATERIAL PROPERTIES

6.1 OBJECTIVE

The objective was to document material properties for reference during failure
analysis. A failure analyst must have a broad array of supportive information available.
A well-documented reference on material properties and variables affecting those
properties is of significant value.

6.2 APPROACH
The approach was to provide a comprehensive yet cost-effective material properties

database by:

a. Obtaining data from a broad resource base. This provided higher confidence in data
accuracy through concurrence of sources.

b. Obtaining data from comprehensive documents such as handbooks. This reduced the
cost of acquiring data through extensive searches of small documents.

c. Gathering constituent properties as well as composite properties. This allowed a
larger, and more flexible material systems reference.

d. Obtaining information on how variables affect material properties. This will provide
the failure analyst additional information for determining cause(s) of failure.

The Task 5 flow diagram is shown in Figure 6.2-1.

6.3 METHODS

Information on material properties was complied from applicable literature, based
on current and anticipated use of aerospace composite materials. Source approvals were
obtained for published data. Data identified were compared and divided into three
categories: constituent properties, system properties, and variables affecting properties.

6.4 RESULTS
Figure 6.4-1 summarizes the figures and tables of all material properties collected
under this task. The material properties are shown in Appendix B.
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Figure/table no.

Table/reference

Figure B-1 Mechanical Properties of Hercules Fiber/Data sheets provided by Hercules.

Figure B8-2 Hercules Fiber Properties at Room Temperature/Data sheets provided by Hercules.

Figure B-3 Typical Epoxy Composite Properties at Room Temperature/Data sheets provided by Hercules.

Figure B-4 Properties of Typical Epoxy Composite at Room Temperature/Composite Design Encyclopedia University
of Delaware, Vol 1 Mechanical Behavior, Carl Zweben and H. Thomas Hahn.

Figure B-5 0° Strength-to-Density Ratio of Typical Epoxy Composite/Composite Design Encyclopedia University of
Delaware, Vol 1 Mechanical Behavior, Carl Zweben and H. Thomas Hahn.

Figure B-6 0° Tensile Properties of Typical Epoxy Composite/Composite Design Encyclopedia University of
Delaware, Vol 1 Mechanical Behavior, Carl Zweben and M. Thomas Hahn.

Figure B-7 Physical Properties of Graphite Fabric Prepreg/Engineer’s Guide to Composite Materials, John W.
Weeton, American Society for Metals, 1987, p6-45.

Figure B-8 Graphical Representation of Tensile Properties of Graphite Fabric Prepreg/Engineer’s Guide to
Composite Materials, John W. Weeton, American Society for Metals, 1987, p6-45.

Figure B-9 Properties of Matrices/Engineer’s Guide to Composite Materials, John W. Weeton, American Society for
Metals, 1987, p6-45.

Figure B-10 Graphical Representation of Tensile Properties of Matrices/Engineer’s Guide to Composite Materials,
John W. Weeton, American Society for Metais, 1987, p6-45.

Figure B-11 Strength-to-Density Ratio of Matrices/Engineer’s Guide to Composite Materials, John W. Weeton,
American Society for Metals, 1987, p6-45.

Figure B-12 Neat Resin Properties at Room Temperature/Composite Design Encyclopedia, University of Delaware,
Vol 1 Mechanical Behavior, Carl Zweben and H. Thomas Hahn.

Figure B-13 Graphical Representation of Neat Resin Properties at Room Temperature/Composite Design
Encyclopedia, University of Delaware, Vol 1 Mechanical Behavior, Carl Zweben and H. Thomas Hahn.

Figure 8-14 Deformation Stages of Fiber, Matrix and Composite/C. . Chamis, “Simplified Composite
Micromechanics Equations for Hygral, Thermal and Mechanical Properties” NASA TM 83320, 1983.

Figure B-15 Properties of Graphite (Carbon) Fibers/Composite Design Encyclopedia, University of Delaware, Vol 1
Mechanical Behavior, Carl Zweben and H. Thomas Hahn.

Figure B-16 Properties of Kevlar and Glass Fibers/Compaosite Design Encyclopedia, University of Delaware, Vol 1
Mechanical Behavior, Carl Zweben and H. Thomas Hahn.

Figure 8-17 Tensile Strength of Neat Resins/Data Sheets Provided by Hercules.

Figure 8-18 Graphical Representation of Tensile Strength of Neat Resins/Data Sheets Provided by Hercules.

Figure 8-19 Young’s Modulus of Neat Resins/Data Sheets Provided by Hercules.

Figure B-20 Graphical Representation of Young’s Modulus of Neat Resins/Data Sheets Provided by Hercules.

Figure B-21 Physical Properties of Epoxy Preimpregnated Unidirectional Tapes/ Engineer’s Guide to Compoasite
Materials, John W. Weeton, American Society for Metal, 1987.

Figure B-22 Properties of Commeraial Carbon Fibers/Engineer’s Guide to Composite Matenials, John W. Weeton,
American Society faor Metal, 1987.

Figure B-23 Graphical Representation of Tensile Properties of Commercial Carbon Fibers/Engineer’s Guide to
Composite Materials, John W. Weeton, American Society for Metal, 1987.

Figure 8-24 Graphical Representation of Strength-to-Oensity Ratio of Commercial Carbon Fibers/Engineer’'s Guide to
Composite Materials, John W. Weeton, American Society for Metal, 1987

Figure B-25 Constituent Property Data of Fibers/Composite Design Encyclopedia, University of Delaware, Vol 1

Mechanical Behavior, Car! Zweben and H. Thomas Hahn 1982.

Figure 6.4-1. Material Properties Documentation Summary - Figures in Appendix B
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7.0 TASK 6: VERIFICATION OF COMPOSITES
FAILURE ANALYSIS LOGIC NETWORK (FALN)

7.1 OBJECTIVE

The objectives were to (1) verify the FALN (developed under the previous program)
by executing it during failure analysis investigation of semi-structural composite
components submitted by the Air Force, (2) evaluate the Tasks 1 through 5 results
developed under this contract to demonstrate their applicability and usefulness during
failure investigation, and (3) incorporate the failure analysis results for the components

into the handbook under the case history section.

7.2 APPROACH

Upon receipt of the failed composite structures from the Air Force, the
investigation was initiated using the FALN and sub-FALN guidelines. First, visual
examination was performed on the as-received component. Second, macroscopic
fractography was performed to preliminarily determine the failure mode. Specimen
cutting, handling, and cleaning guidelines developed under Task 1 were used to select
areas of interest for further laboratory analyses. Third, NDE techniques were employed
to identify the extent of damage. Fourth, various material verification techniques, such
as thermal and physical analyses, were used to determine the component material
characteristics. Material properties documentation, developed under Task 5, was used as
supportive information. Fifth, references on microscopic fractography developed under
Task 3 was used to determine the crack growth directions and mode of failure. Stress
analysis, an optional sixth step under the FALN, was not required for this investigation.

The Task 6 flow diagram is shown in Figure 7.2-1.

7.3 METHODS

Two failed semi-structural components were received and analyzed using the
developed approaches and techniques. The results were incorporated into the Case
History section of the handbook. The first component was a continuous fiber-reinforced
composite; no historical background data was provided. The second component was a
main landing gear strut, made of E-glass/epoxy material, from a Helio H-800 aircraft.
Boeing conducted failure analysis of the first component and GE performed the analysis

on the other.
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Figure 7.2-1. Task 6 Flow Diagram
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FALN and sub-FALN guidelines were used to perform the investigation; visual
examination, NDE, material characterization, macro- and microfractography were aiso
used during the failure analysis. Stress analysis was an optional step on the FALN and
was not required in either of these cases. Data collection format sheets for macroscopic
fractography, NDE, material characterization, and microscopic fractography were used
to ensure comprehensive data collection during failure investigation.

7.4 RESULTS

7.4.1 Failure analysis of the first component
Failure analysis of the first component was conducted by Boeing.

7.4.1.1 Background History

Figure 7.4-1 shows the fractured test panel in its as-received condition. The
rectangular panel, with a dimension of 43 by 36 inches, appeared to have been fastened
to one or more fixed structures during testing. Due to limited background information,
the emphasis was placed on the visual examination. At the time of the part's receipt, it
was speculated that the part had been fractured via impact loading. This speculation
was made due to the appearance of the damage which was typical of that observed in

impact loaded structures.

7.4.1.2 Factual Data

Visual Examination. As shown in Figure 7.4-2, the damage appeared to have been
caused by an object penetrating through the panel from the interior surface (Fig. 7.4-2a),
as evidenced by the brooming fibers on the exterior surface (Fig. 7.4~-2b). These damage
features are commonly observed in an impacted specimen.

In conjunction with stress analysis, visual examination was performed using fastener
hole damage as evidence to determine the loading condition experienced by the panel
during the test. The key evidence was the depth and elongation of the hole. In general,
hole elongation indicates shear-type loading in which the head and the shank of the
fastener tilt at an angle to the hole. Figure 7.4-3 illustrates the damage of a typical
shear loaded fastener hole. The damage seen in the countersunk region of the fastener
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hole was created by the fastener head which dug into the laminate due to the test load.
In contrast, tension loaded fastener holes did not show any sign of elongation, retaining
their circular shape (Fig. 7.4-4). The fastener head dug beyond the countersunk region
causing severe delamination near the inner edge of the hole. Figure 7.4-5 shows the
mapping of the fastener hole damage. From the mapping, it was determined that
Region A of the panel was loaded under tension and shear. However, Region B seemed to
have been securely fastened to a fixed structure as evidenced by the lack of fastener
hole damage in that portion of the panel.

The fastener hole damage also provided information to verify the proper use of the
fasteners or the fastener holes for the particular load conditions applied. Two commonly
used fasteners were placed into an undamaged fastener hole to determine which had been
used (Fig. 7.4-6). The tensile fastener, which has a slightly larger head diameter than
the (intermediate) shear fastener, fitted flush into the undamaged hole. However, when
the fasteners were placed into one of the fastener holes damaged from tensile loading
(Fig. 7.4-7) it was evident that the shear fastener was used. The tensile fastener head
was too large for this particular fastener hole damage, but the shear fastener fitted
almost perfectly into the damaged hole. The above macroscopic analysis suggests that
the tensile fasteners were used for Region B and shear fasteners were used for Region A.

Non-Destructive Evaluation. To determine the extent of the damage,
through-transmission ultrasonic inspection (C-scan) was performed. The dark-shaded
regions in the vicinity of the fastener holes and at the apparent impact site indicate the
damaged region. These regions are shaded due to higher attenuation from the anomalous
regions. Most of the damage occurred on one half of the panel, Region A, as shown in
Figure 7.4-8.

Materials Characterization. To characterize the material system, thermal/chemical
analysis, electron microprobe analysis, and optical microsecopy were performed.

A Fourier transform infrared (IR) spectrometer was used to determine the resin used
to fabricate the component. Two samples from the panel were analyzed. Figure 7.4-9
shows the infrared (IR) spectra obtained from the test sample. The general resin type
was determined to be a 350°F cure conventional epoxy system by the method of
fingerprinting using the limited in-house database of IR spectrum. Figures 7.4-9b and ¢
show the IR spectrum of Hercules 3501-6 and Hexcel F263 prepreg materials
respectively; these spectra were used for fingerprinting those obtained from the sample.
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Differential scanning calorimetry (DSC) showed no exothermic peaks, indicating
that the material was fully cured (Fig. 7.4-10). A decomposition at 378°C was also
observed. Thermomechanical analysis (TMA) showed the average glass transition
temperature (Tg) to be 210°C (410°F, Fig. 7.4-11). Thermogravimetric analysis (TGA)
indicated the composite decomposed at approximately 357°C (6759F, Fig. 7.4-12).

Acid digestion was performed using nitric acid to determine the resin content. The
average weight percent of resin content (three samples) was 29.3% as shown in
Figure 7.4-13. Because of the lack of background information, it was impossible to tell
whether the resin content was out of specification. However, from the fracture
appearance it was determined that the resin content was not the primary cause of the
fracture (since no major voids were observed near the fracture).

Figure 7.4-14 shows the wavelength dispersive X-ray (WDX) scan of the sample.
The WDX scan indicated that the fiber used was carbon which is characterized by a K,
peak at 44.700A and 0.277 KeV. The WDX technique was used instead of EDX (energy
dispersive X-ray) because WDX allows the detection of lighter elements such as carbon
and oxygen.

Evaluation of an area away from the fracture showed that the quality of the
laminate was good (with little porosity) and the ply stacking sequence was symmetrical
(Fig. 7.4-15). Due to the severity of the fiber damage near the apparent impact site, it
was impossible to perform an evaluation of the cross-section.

Fractography. Fractography of this component was largely macroscopic. The
damaged region resembled an area typically observed in an impact loaded structure. The
fracture exhibited complex mixed-mode features involving both tension and shear.
Further microscopic analysis was not performed because the macrofractography of the
fractured panel provided sufficient evidence to determine the crack direction, fracture
mode, and origin.

Stress Analysis. Stress analysis was performed in conjunction with visual

examination to determine the state of loading of the fractured panel.

7.4.1.3 Summary

The fastener hole damage indicated that Region A of the test panel was subjected to
tensile and shear loading. Region B showed no sign of damage suggesting that it was
fixed to some type of structure. The major damage on the panel appeared to have been
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Sample Composite weight Fiber weight Resin content
No. (grams) {grams) (% by weight)
A 1.6451 1.1691 28.9
B 1.3565 0.9571 29.4
C 1.7080 1.2028 29.6
Average: 1.5699 1.1097 293

Figure 7.4-13. Resin Content Determined by Acid Digestion
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caused by impact loading in which a projectile penetrated through the panel from the
interior surface. Materials characterization revealed that the resin system used in
fabricating this component was a 350°F cure conventional epoxy system reinforced with
carbon fibers. This material system exhibited an average resin content of 29.3% by
weight and was fully cured.

The cross-sectional evaluation away from the fracture revealed that the laminate
quality and its symmetrical stacking response were good; little porosity was found.
Further mieroscopic analysis was not performed because the macrofractography of the
fractured panel provided sufficient evidence to determine the crack direction, fracture

mode and origin.

7.4.1.4 Conclusions/Recommendations

The fastener hole damage observed in certain locations on the test panel indicated
that some of fasteners were not designed for the particular application. The fasteners
on the end of Region A experienced a substantial amount of shear loading compared to
the rest of the panel. The recommendation would be to examine the hole damage and
make appropriate changes in the fasteners (i.e.,, change to shear or tension) to
accommodate the load conditions experienced during the initial testing. Due to the fact
that the mechanical test was unknown, recommendation for design improvement is
difficult.

Material anomalies such as contamination or poor processing were not related to the
cause of the fracture. The cause of fracture appeared to be impact loading due to the
penetration of a projectile.

It would be helpful for the investigator to be provided with additional background
information and also other related parts such as the fasteners used during the test to
verify in future analyses.

7.4.2 FRailure Analysis of the Second Component
Failure analysis of the second component was conducted by GE.

7.4.2.1 Background History
The second component was a Helio H-800 main landing gear strut, which had
fractured at the tapered end. The component received was an E-glass/epoxy composite
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with a 0/90 layup. The strut is oriented approximately 40 degrees with respect to the
wide end. The component is subjected to axial and shear stress, as well as a bending
moment, induced by the weight of the aireraft. Visual examination revealed a
translaminar fracture surface with evidence of tensile and compressive portions,
indicating fracture due to a bending load. Three discontinuous delaminations, one
located at the approximate mid-thickness of the small piece and two in the large piece,

were observed in the strut.

7.4.2.2 Factual Data

Visual Examination. The fracture was located at the wide end of the strut at the
point where the taper begins (see Fig. 7.4-16). This translaminar fracture revealed both
tensile and compressive fracture characteristics, typical of fracture under a bending load
(Fig. 7.4-17 and 7.4-18). Tensile fracture is indicated by multiplanar fracture with
individual fibers or bundles observed, whereas compressive fracture is indicated by
planar fracture. Translaminar fracture occurred at an angle such that it propagated
through a bolthole on the lower surface and adjacent to the bolthole on the upper surface
(see Fig. 7.4-16 and 7.4-19). The edge of the aircraft mounting plate is approximately
located at the fracture location. The tensile and compressive portions of this fracture
were consistent with the bending moment produced as installed in the aircraft (see
Fig. 7.4-20). Three separate delaminations were observed in this strut. One
delamination was observed in the small piece at approximately the mid-thickness of the
strut, between the tensile and compressive portions of the fracture (neutral axis). Two
delaminations were observed on the large (long) piece which divided the strut thickness
approximately into thirds.

Non-Destructive Evaluation. Non-destructive evaluation was not performed on this
component because the damage was considered to be readily apparent upon visual
inspection.

Material Characterization. Nearly identical results were obtained from the glass
transition temperature measurements by TMA and DSC (see Fig. 7.4-21). These values
were 133°C (2719F) and 135°C (2759F), respectively. These are typical values for a
1219C (2509F) epoxy resin. Additional chemical evaluation should be performed to fully

characterize the conformance of this material to specifications.
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Delamination T

_/ c 1X
Upper surface
Fracture surface—small piece

T e

Delamination—upper half 0.6X Delamination—upper half 0.6X

Figure 7.4-18. Macrophotographs of the Top of the Small Piece Fracture Surface Showing Delamination,
Upper Surface, Tension Fracture (T) and Compression Fracture (C). The lower
macrophotographs show the mating delamination surfaces after laboratory separation
of the delamination. The area shown by the small box is magnitied in figure 7.4-24.
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Dimension change, pm

Heat flow, W/g

a = 402.6 um/m °C

a = 83.6 um/m °C

40 60 80 100 120 140 160
Temperature, °C
"(a) TMA

180

-0.067

-0.08+

-0.10

126.55 °C

50 100 150 200
Temperature, °C

(b) DSC
Figure 7.4-21. TMA and DSC Thermograms of Strut
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Lower surface ) 0.12X

»
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Bolt hole—lower surface 3.1X

Figure 7.4-22. Macrophotographs of the Lower Surface of Strut. The figure shows the location and
orientation of section x-x, magnified in figure 7.4-23. The local bulging at the end of the
strut (emphasized by the segmented line) occurred as a result of restraint from the bolt.
Cracks labeled by the small arrows were also generated by this loading condition.
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A metallographic section was taken through a bulged area (see Figs. 7.4-22
and 7.4-23), found adjacent to a bolthole, which was apparently the result of constraint
by the bolt. This section revealed microbuckling of fibers in a crack-like formation
extending from the delamination toward the lower surface. Fiber and matrix details
were difficult to discern from the prepared section, but the overall condition of the
laminate appeared to be good.

Fractography. SEM examination was performed on the single delamination of the
small piece and on the translaminar fracture on the small piece. Evidence of shear
fracture (scallops and hackles) was observed on the laboratory-exposed surface of the
single delamination in the small piece (see Figs. 7.4-24 and 7.4-25). The propagation
direction was oriented axially along the length of the strut, but the exact direction could
not be determined. Examination of the tensile half of the translaminar fracture revealeu
radial patterns on fiber end fractures (see Fig. 7.4-26). The resultant direction of crack
propagation, determined by mapping the directions in which the lines radiate on the
individual fiber fractures, was from the lower surface (tension) toward the delamination.
Examination of the compressive half of the translaminar ffacture revealed buckled fibers
displaying chop marks (see Fig. 7.4-27), typical of compressive failures. Although SEM
examination of the translaminar fracture was conducted around the bolthole region, the
non-conducting surfaces encountered produced images which were not of sufficient
quality to include in this report. SEM examination of the translaminar fracture was
difficult to perform, due to the extreme depth of this fracture. This prevented adequate
application of gold (even after multiple sputter applications) to get a uniformly covered
surface. Therefore, charging of uncoated areas during SEM examination made the
location of suitably informative, fiber fractures difficult to perform.

Stress Analysis. Preliminary stress analysis was performed in conjunction with
visual examination to determine the state of loading of the strut.

7.4.1.3 Conclusion/Recommendation

All evidence observed during this investigation indicates failure of the strut due to a
bending moment applied at the aircraft attachment plate (fracture location). The
moment induced tensile and compressive fractures at the lower and upper surfaces,
respectively, as well as the delaminations observed due to the acting shear plane. Since
no material defects or anomalies were observed during this evaluation, the fracture

apparently occurred due to overload, perhaps during hard landing. Due to the fact that
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tensile fiber radial patterns indicated propagation from the tensile surface toward the
delaminations and since the observed delaminations are discontinuous, it is inferred that
initiation of the translaminar fracture occurred prior to delamination.

More specific conclusions could be drawn concerning the loading of this component
during fracture if some record of aircraft/component field service had been provided.
Although this information was not provided, indication of some field service of this

component was observed in the distortion at the boltholes.
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APPENDIX A:

TASK 4 RESULTS — APPROVED DATA COLLECTION SHEETS
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FAILURE ANALYS!IS COLLECTION
AND TRACKING SYSTEM (FACTS)
DATA INPUT SHEET

OPERATOR: DATE:
REPORTNUMBER: _______  DESIGN DRAWING PART NAME/NUMBER:

PART LOCATION ON AIRCRAFT: ___
MATERIAL/PROCESSING INFORMATION/SPECIFICATION:

AIRPLANE INFORMATION: CUSTODIAN AFB:
MODEL: FLIGHT HOURS:
NUMBER OF LANDINGS:

BACKGROUND/INFORMATION:
LOCATION OF DAMAGE:
ENVIRONMENTAL CONCERNS:
(OTHERS):

DATA:

ANALYSES CONDUCTED:

RESULTS:

RECOMMENDATIONS:

KEYWORDS:

D180-31996-1
A-2




I

OPERATOR:

DATE:

NON-DESTRUCTIVE
EXAMINATION
DATA INPUT SHEET

PART NAME/NUMBER:

MATERIALS & CONSTRUCTION:

LOCATION OF ANALYSIS:

REASON FOR ANALYSIS:

ANALYTICAL INSTRUMENT/SETTINGS:

SUPPORTIVE DATA:

RESULTS/INTERPRETATIONS:

KEYWORDS:
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MATERIALS CHARACTERIZATION
DATA INPUT SHEET

OPERATOR: DATE:
PART NAME/NUMBER: .
MATERIALS/SPECIFICATIONS:

SPECIFICATION REQUIREMENTS:

CURE TEMP:

FIBER/RESIN DENSITIES:

VERIFICATION DATA:

® Tg DETERMINATION-
INSTRUMENTATION:

RESULTS:

®  RESIN CHARACTERIZATION-
INSTRUMENTATION:

RESULTS:

®  RESINCONTENT-
INSTRUMENTATION:

RESULTS:

®  SPECIALIZED ANALYSES METHODS USED (HPLC, GPC, DSC, SURF. ANALYSIS, ETC.):

RESULTS:

KEYWORDS:
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COMMENTS:

MATERIALS CHARACTERIZATION
DATA INPUT SHEET
(FIGURE ATTACHMENT)

Diagram of specimen location

Data/Graphs from analysis
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OPERATOR:

DATE:

FRACTOGRAPHY
MACROSCOPIC ANALYSIS
DATA INPUT SHEET

PART NAME/NUMBER:

MATERIAL:

VISUAL OBSERVATIONS:

KEYWORDS:
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MAGNIFICATION:
COMMENTS:

FRACTOGRAPHY MACROSCOPIC ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)

Diagram or photo of part location

on structure

Photo of overall part

Closeup of fracture origin or defect

MAG
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FRACTOGRAPHY
MICROSCOPIC ANALYSIS
DATA INPUT SHEET

OPERATOR:

PART NAME/NUMBER:

MATERIAL:
RESIN/FIBERSYSTEM:
LAYUP:

MICROSCOPIC OBSERVATIONS:

DATE:

KEYWORDS:
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FRACTOGRAPHY MICROSCOPIC ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)

®  Optical photomicrograph

e  Low-Mag photomicrograph

e SEM
e TEM
e STEM
&  High-Mag photomicrograph
e SEM
o TEM
e STEM

MAG

MAGNIFICATION:
COMMENTS:
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OPERATOR: DATE:

PART NA. {E/NUMBER:

STRESS ANALYSIS
DATA INPUT SHEET

MATERIALS/SPECIFICATION/CONSTRUCTION.

ENVIRONMENTAL AND LOAD CONDITIONS (PRIOR TO AND DURING FRACTURE):

INPUTS FROM FRACTOGRAPHY (ORIGIN, LOAD TYPES, DEFECTS):

INITIAL STRUCTURAL REVIEW:
®  GROSS STRAIN AT ORIGINS:

®  ALLOWABLES AT ORIGINS:

®  ANALYSIS METHODS:

®  RESULTS/COMMENTS:

LAMINA LEVEL REVIEW:
®  FAILURE CRITERIA USED:

®  ANALYSIS METHODS USED:

®  RESULTS:

SUMMARY/INTERPRETATIONS:

KEYWORDS:
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COMMENTS:

Diagram of part loading

STRESS ANALYSIS
DATA INPUT SHEET
(DIAGRAM ATTACHMENT)
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APPENDIX B:

TASK 5 RESULTS — MATERIAL PROPERTIES
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Typical fiber properties AS1 AS2 AS4 AS6 IM6 M7
Tensile strength, ksi 451 401 551 601 636 684
MPa 3105 2760 3795 4140 4382 4713

Tensile modulus, msi 33 33 34 35 a0 41
GPa 228 228 235 242 276 283
Ultimate elongation, % 1.32 1.20 1.53 1.65 1.50 1.60

Carbon content, % 92 94 94 94 94 -
Density, g/cm3 1.80 1.80 1.80 1.83 1.73 1.78

Typical epoxy composite

properties at RT AS1 AS2 AS4 AS6 IM6 M7

Tensile strength, ksi 280 290 342 373 395 424
MPa 1932 2001 2353 2567 2719 2922

Tensile modulus, msi 20 20 21 22 20 25
GPa 138 138 145 151 138 175

Flexural strength, ksi 250 240 260 272 250 237
MPa 1725 1656 1794 1877 1725 1635

Flexural modulus, msi 18 18 19 20 22 24
GPa 124 124 131 139 150 166

Short beam shear, ksi 19 18 18 19 18 19
MPa 131 124 124 129 124 129

Fiber volume, % 62 62 62 62 62 62

Figure B-1. Maechanical Properties of Hercules Fibers
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Figure B-2. Hercules Fiber Properties at Room Temperature
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Figure B-3. Typical Epoxy Composite Properties at Room Temperature
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Tensile strength Young's modulus Density
t;i::r. .0 90° 0° 90° Pori;:?on's
MPa | ksi | MPa | ksi | GPa | msi | GPa | msi g/em? | Ibfin3
E-Glass 1020 150 40 7 45 6.5 12 18 0.28 2.08 0.075
S-Glass 1620 230 40 7 S5 8.0 16 23 0.28 2.02 0.073
Boron 1240 180 70 10 210 300 19 27 0.25 2.02 0.073
Kevlar 49 1240 180 280 40 76 1.0 55 08 034 1.39 0.050

* Fiber volume, V¢ = 60%

Figure B-4. Properties of Typical Epoxy Composites at Room Temperature
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Figure 85 0’ Strength-to-Density Ratio of Typical Epoxy Composites
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0 ya L
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1 1 1 1 1

1000 MPa
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1200 1400 1600
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Figure B-6. 0°Tensile Properties of Typical Epoxy Composites
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Figure B-8. Tensile Properties of Graphite Fabric Prepreg
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IMHS = Intermediate modulus high strength
HM = High modulus

Figure B-10. Tensile Properties of Matrices
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Figure B-11. Strength-to-Density Ratio of Matrices
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Tensile modulus, GPa

Resin Type Specific gravity nods Tensile st(rkest;;gth, MPa

Epoxy Thermoset 1.1-14 2.1-55(03-08) 40-85(6-12)
Phenolic Thermoset 12-14 2.7-41(04-0.6) 35-60(5-9)
Polyester Thermoset 1.1-14 1.3-4.1(0.2-0.6) 40-85(6-12)
Acetal Thermoplastic 14 35(0.5) 70(10)

Nylon Thermoplastic 1.1 1.3-35(0.2-0.5) 55-90(8-13)
Polycarbonate Thermoplastic 1.2 2.1-35(0.3-0.5) 55-70(8 - 10)
Polyethylene Thermoplastic 09-1.0 0.7-1.4(0.1-0.2) 20-35(3-5)
Polyester Thermoplastic 13-1.4 2.1-28(03-0.4) 55-60(8-9)

Figure B-12. Table of Neat Resin Properties at Room Temperature
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Figure B-13. Neat Resin Properties at Room Temperature
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Stress

———— e -~

Composite

Matrix

-
|
|

Strain

* Four stages of deformation of fibers, matrix, and

composite:
Stage!

Stage !
Stage Ill
Stage IV

elastic deformation of both fibers
and matrix.

elastic deformation of fibers; plastic
deformation of matrix.

plastic deformation of both fibers
and matrix.

failure of both fibers and matrix.

Figure B-14. Deformation Stages of Fiber, Matrix, and Composite
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High strength

High modulus

Ultra-high

modulus
Specific gravity, y 18 19 20-21
Modulus, E, msi 34 53 75-90
(GPa) (230) (370) (520 - 620)
Tensile strength®, o, ksi 360 260 150 - 190
(MPa) (2480) (1790) (1030-1310)
Tensile elongation, *% 1.1 0.5 0.2
Specific modulus, Efy, msi 19 20 38-45
(GPa) (130} (190) (260 -310)
Specific strength*, ofy, ksi 200 137 75-90
(MPa) (1380) (940) (520 - 620)
Longitudinal CTE, 10-6in/in°F 0.2 -0.3 -0.6, est.
(106 m/m °C) (-0.4) (-0.5) (-1.1, est.)

* In a typical composite

Figure B-15. Properties of Graphite (Carbon) Fibers
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Properties E-glass S-glass Kevlar 29 Kevlar 49
Specific gravity, Y 2.60 25 1.44 1.44
Modulus, E, msi 105 126 12** 18
(GPa) (72} (87) (83) (124)
Tensile strength*, 0, ksi 250 360 330 330
{(MPa) (1.720) (2,530) (2,270) (2,270)
Tensile elongation*, % 24 29 28 1.8
Specific modulus, E/Y msi 4.1 5.1 83 125
(GPa) (28) (35) (57) (86)
Specific strength®, 6/vy ksi 96 145 230 230
(MPa) (661) (1,000) (1,580) (1.580)
Longitudinal, C.T.E., 10-6in/in °F 28 31 -11
(10-6m/m °C) (5.0) (5.6) (-2)

* In a typical composite

Figure B-16. Properties of Kevlar and Glass Fibers
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23°C(73.4°F) 82°C (179.6°F) 121°C (249 8°F)
Neat Resin System Dry Wet Dry Wet Dry Wet

MPa | ksi | MPa | ksi | MPa | ksi | MPa | ksi | MPa | ksi | MPa | ksi
Hercules 3502 - epoxy 41 | 60 | 36 | 52| 42 | 61} 25 | 36 ] 54 ] 78| 15| 22
Fibredux 914 - epoxy 28 40 48 70 32 46 32 4.6 19 28 8 1.2
Hercules 2220-1 - epoxy a3 6.3 68 99 73 106 | 46 6.7 60 8.7 23 34
Hercules 2220-3 - epoxy 46 6.7 67 9.7 70 | 102 | 44 6.4 62 9.0 21 3.0
Hexcel 1504 - epoxy 77 | 112 ] 51 74 Al 103 | 48 6.9 62 9.0 16 23
Narmco 5245C - Bismaleimide 74 | 10.7 | 47 6.8 62 9.0 57 8.2 76 | 110 28 490
American Cyanamid CYCOM 907 - 86 | 1251 59 84 | 67 | 97 2 03 1 0.1 - -
multiphase epoxy, formerly BP907
Union Carbide 4901A - epoxy cured 109 | 158 | 79 | 115 | 57 8.2 3 0.4 10 14 - -
with MDA (Methylenedianaline)

Figure B-17.

Table of Tensile Strength of Neat Resins
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23°C(73.4°F) 82°C(179.6°F) 121°C (249 .8°F)

Neat Resin System Dry Wet Dry Wet Dry Wet
GPa | msi | GPa | msi | GPa | msi | GPa | msi | GPa | msi | GPa | msi
Hercules 3502 - epoxy 38 | 055 | 35 | 0.51 31 {045} 26 | 037 ]| 28 040 | 19 | 028
Fibredux 914 - epoxy 40 | 0S8 | 3.1 {045} 3.2 |046 | 21 | 031 | 07 ] 010 | 03 | 004
Hercules 2220-1 - epoxy 30 [043 31 {045 26 (038 21 (030 22 |032] 10 | 015
Hercules 2220-3 - epoxy 30 |044] 31 (045 25 (036 21 {031 21 | 031 | 09 [0.13
Hexcel 1504 - epoxy 39 |0S57 | 35 |05t | 33 048} 28 [040| 2.7 039 | 09 {013
Narmco 5245C - Bismaleimide 37 |0S4)] 40 | 058 | 34 |0SO | 31 |045 | 3.4 {045 ]| 09 | 013
American Cyanamid CYCOM 907 - 32 1047 | 29 | 042} 28 1040 | 0.1 |0O1 | 26 | 038 - -
multiphase epoxy, formerly BP907
Union Carbide 4901A - epoxy, cured 48 | 070 | 36 (052 28 | 041 | 01 |0OOT | OS5 | 0.07 - -
with MDA (methylenedianaline)

Figure B-19. Table of Young’s Modulus of Neat Resins
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Figure B-20. Young’s Modulus of Neat Resins
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di:::::er Density sIreer;usgteh nrggﬂlltfs

pm | mils g/cm3 Ib/in3 MPa ksi | GPa | msi
Magnarnite AS1 8.00 | 0.315 1.80 0.065 3100| 450 | 230 33
Magnamite AS4 8.00 | 0.315 1.80 0.065 3590 | sS20 | 235 34
Magnamite AS6 - - 1.82 0.066 4140 | 600 | 243 35
Magnamite IM6 - - 1.74 0.063 4380 635 | 279 40
Celion GY-70 8.38 | 0.330| 1.91-1.97| 0.069-0071| 1520 | 220 | 485 70
Celion 3000 7.11 | 0.280 1.77 0.064 3790| 550 | 231 34
Thornel T-300 693 | 0.273 1.77 0.064 3240 470 23 34

Figure B-22.

Properties of Commercial Carbon Fibers
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Figure B-23. Tensile Properties of Commercial Carbon Fibers
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APPENCIX C:

BOEING DATA FORMAT SHEETS
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FAILURE ANALYSIS COLLECTION
AND TRACKING SYSTEM (FACTS)
DATA INPUT SHEET

OPERATOR: C.T.Hua DATE: October 1988
REPORT NUMBER: DESIGN DRAWING PART NAME/NUMBER: Air Force Panel

PART LOCATION ON AIRCRAFT: _Information not provided
MATERIAL/PROCESSING INFORMATION/SPECIFICATION: _information not provided

AIRPLANE INFORMATION: CUSTODIAN AFB:
MODEL: . FLIGHT HOURS:
NUMBER OF LANDINGS: i

BACKGROUND/INFORMATION:
LOCATION OF DAMAGE: Region A of the panel (see attached photo)
ENVIRONMENTAL CONCERNS:
(OTHERS):

DATA:

ANALYSES CONDUCTED: Macroscopic analysis included visual examination and macrophotograph
Nondestructive examination included through transmission ultrasonics. Materials characterization included
thermomechanical analysis, infrared spectroscopy, acid digestion and wavelength dispersive X-ray. Microscopic
analysis included metallographic cross sectioning.

RESULTS: The fastaner hole damage indicated that Reqion A of the test panel was subject to tensile and shear
loading. The major damage appears to have been caused by impact loading in which a projectile penetrated
through the panel from the interior surface. Material characterization revealed the material system was 350°F
cure epoxy/carbon fiber, the resin content was 29.3% by weight, and the panel was fully cured. Cross-sectional
examination reveled a symmetrical and almost porosity-free laminate.

RECOMMENDATIONS:

KEYWORDS: Macroscopic analysis Nondestructive examination
Materials characterization  Microscopic analysis
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NON-DESTRUCTIVE
EXAMINATION
DATA INPUT SHEET

OPERATOR: _R. K, Krizanick DATE:
PART NAME/NUMBER: AirEorce panel
MATERIALS & CONSTRUCTION: infarmation nat provided

LOCATION OF ANALYSIS: _The entire panel.
REASON FORANALYSIS:  _Todetermine the damaged locationsand the extent of damage

ANALYTICAL INSTRUMENT/SETTINGS: Through -transmission ultrasonics (TTUat S MH2

SUPPORTIVE DATA: __Attached C-Scan

RESULTS/INTERPRETATIONS.
be caused from impact loading with damaged fastener holes surrounding its perimeter.

KEYWORDS: NDE TTU
Delamination
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NON-DESTRUCTIVE EXAMINATION
(C-SCAN ATTACHMENT)

C-Scan of Component
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FRACTOGRAPHY
MACROSCOPIC ANALYSIS
DATA INPUT SHEET

OPERATOR: _Robert T. Parker DATE: October 1988
PART NAME/NUMBER: _Air Force Panel
MATERIAL: _Information notprovided
VISUAL OBSERVATIONS: _Fastener hole damage was visyally examined to determine the state of Igading
ien h nel dyrin The key eviden he elongation of hole an h of the hol

The | ing directi f the § neri 1l rallel he major axis of the elon hole. Ingeneral

r i i m h n rely . toafi re which was eviden

n ion rred fr he inside w rooming” fibers on th rsyrface: commonl

inani i T f f n | j nyndam f ner hol verif

hether ropriate f ners w . ile f n i lightly larger h iameter than
¢ fastener, fi lysh in | in fastener into one of the § ner hol
fr nsil ing, i vigent that the shear f ner Atensile f ner fi in

le did n he hol m ._Thi h (< fastener forth icylar

KEYWORDS: Eastenerholedamage  Tensile Joading
Holeelongation  Shearloading
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FRACTOGRAPHY MACROSCOP'C ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)

. Countersunk . T

regionx.::é;‘é;’ - : %%,

Majza; fastener h;fe.aamég.e whic
“indicated "rocking” of the fastener

JSUNOA Y

Cross-sectional view

oY

8x

Damage in the Fasiener Hole Loaded Under Shear
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FRACTOGRAPHY MACROSCOPIC ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)

Cross-sectional view 8X

Damage in the Fastener Hole Loadcd Under Tension

D180-31996-1
C-8




Damage on the exterior surface 0.23X Damage on the interior surface 0.5X

Impact Damage

FRACTOGRAPHY MACROSCOPIC ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)
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FRACTOGRAPHY MACROSCOPIC ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)

Tensile fastener 27X Shear fastener 2.7X

Difference in Fastener Fit in the Undamaged Fastener Hole
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FRACTOGRAPHY
MICROSCOPIC ANALYSIS
DATA INPUT SHEET

OPERATOR: M. M. Yamashita DATE: October 1988
PART NAME/NUMBER: _Air Force Panel
MATERIAL: Continyqus fiber reinforced composites
RESIN/FIBER SYSTEM: Information not provided
LAYUP: Information not provided
MICROSCOPIC OBSERVATIONS: Crack mapping of th lamination was n rform

min macr ic analysis.

KEYWORDS: Ply count Laminate quality
Optical microscopy Porosity
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FRACTOGRAPHY MICROSCOPIC ANALYSIS
DATA INPUT SHEET
. (PHOTO ATTACHMENT)
Ply stacking
sequence:

45
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45
90
90
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Cross-Sectional View of the Panel
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MATERIALS CHARACTERIZATION
DATA INPUT SHEET

OPERATOR: ), C Chen DATE: Qctober 1988
PART NAME/NUMBER: _Air Force Panel

MATERIALS/SPECIFICATIONS: Continuous fiber reinforced composites

SPECIFICATION REQUIREMENTS: _None _
CURE TEMP: _Infarmation nat provided
FIBER/RESIN DENSITIES: Infarmation nat provided
VERIFICATION DATA:

e Tg DETERMINATION-
INSTRUMENTATION: ___Thermomechanical analysis (TMA) - flexyre method

RESULTS: _210.448°C 209.715°C (average 210°F)

®  RESIN CHARACTERIZATION-
INSTRUMENTATION: __Infrared (IR roscopy

RESULTS: _The spectra obtained from the unknown resembled the spectra of either Hercyles 3501-6 or Hexcel
- F-263 (epoxies) by ~fingerprinting”.

®  RESINCONTENT-
INSTRUMENTATION: _Acid digestian with nitric acid

RESULTS: 28.9, 29.4,29.6% by weight (average 29.3%)

e  SPECIALIZED ANALYSES METHODS USED (HPLC, GPC, DSC, SURF. ANALYSIS, ETC.): Wavelength dispersive
X-ray (WDX) spectroscopy verified that the fiber was carbon.

RESULTS: resi in fabricati hi n ither H

glass transition temperature (Ta) of 410°F and a resin content of 29.3% by weight. The fiber was identified as a
carbon fiber. o
KEYWORDS: Thermomechanical analysis Infrared (IR) spectroscopy Acid digestion

Wavelength dispersive X-ray (WDX)
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MATERIALS CHARACTERIZATION
DATA INPUT SHEET
(FIGURE ATTACHMENT)
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DATA INPUT SHEET
(FIGURE ATTACHMENT)

MATERIALS CHARACTERIZATION
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MATERIALS CHARACTERIZATION
DATA INPUT SHEET
(FIGURE ATTACHMENT)

Sample Composite weight Fiber weight Resin content
No. (grams) {grams) (% by weight)
A 1.6451 1.1691 289
B 1.3565 0.9571 29.4
Cc 1.7080 1.2028 29.6
Average: 1.5699 1.1097 29.3

Resin Content Determined by Acid Digestion
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Intensity, KeV

0.277

MATERIALS CHARACTERIZATION
DATA INPUT SHEET
(FIGURE ATTACHMENT)

44,700
Energy level, A

Wavelength Dispersive X-ray (WDX) Scan for Carbon K o
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APPENDIX D:

GE DATA FORMAT SHEETS
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FAILURE ANALYSIS COLLECTION
AND TRACKING SYSTEM (FACTS)
DATA INPUT SHEET

OPERATOR: G.White/GE DATE: _Qctober 14, 1989
REPORT NUMBER: DESIGN DRAWING PART NAME/NUMBER:

PART LOCATION ON AIRCRAFT: Main Landing Gear Strut
MATERIALPROCESSING INFORMATION/SPECIFICATION: E-Glass/Epoxy Composite

AIRPLANE INFORMATION: CUSTODIAN AFB:
MODEL: FLIGHT HOURS:
NUMBER OF LANDINGS:

BACKGROUND/INFORMATION:

LOCATION OF DAMAGE: Wide End of Strut at Taper
ENVIRONMENTAL CONCERNS: Exposure to Moisture
(OTHERS):

DATA:

ANALYSES CONDUCTED: __ Visual Examination, SEM Examinatign, Metallographic Sectioning, Glass Transition

Temperature Measurement

RESULTS: Translaminar fr rean lamination rred as a resylt of nding |
location. Material condiiton was good.

RECOMMENDATIONS:

KEYWORDS:
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FRACTOGRAPHY
MACROSCOPIC ANALYSIS
DATA INPUT SHEET

OPERATOR: _G. White/GE DATE: October 14, 1988

PART NAME/NUMBER: __Helig H-800 Main Landing Gear Stryt

MATERIAL: _E-Glass/Epoxy Composite

VISUAL OBSERVATIONS: _The fr r locat i nd of the stryt h int wher
istranstaminar fr re reveal th tensile an mpressi re char isti ical of fr

nding load. The tensile and compressiv ions of this fr re were consistent with airgr rientation. -
ntin lamination w v n h the large {long) and small pi f this fr re. Th lamination

was located at approximately the mid-thickness of the strut, between the tensile and compressive portions of the

KEYWORDS: Iranslaminar Delamination
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FRACTOGRAPHY MICROSCOPIC ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)

MAGNIFICATION: 0.12X
COMMENTS: Photomacrograph of the strut upper surface in the as-received condition.
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FRACTOGRAPHY MACROSCOPIC ANALYSIS
DATA INPUT SHEET
(PHOTO ATTACHMENT)

MAGNIFICATION: 1X

COMWIMENTS: Photomacrograph of the translaminar fracture surface (small end) with the tensile portion in the fower
half of the photo.
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FRACTOGRAPHY
MICROSCOPIC ANALYSIS
DATA INPUT SHEET

OPERATOR: G. White/GE DATE: _Qctober 14, 1988
PART NAME/NUMBER: _Helig H-800 Main Landing Gear Stryt
MATERIAL: Composite

RESIN/FIBERSYSTEM: E-Glass/Epoxy
LAYUP: 0° 90° Plies

MICROSCOPIC OBSERVATIONS: _Evidence of shear fr r i1 n kles) wer v th lamination
rf The pr tion direction rien xially along the length of the str t the ex. irection |
n termin xamination of nsile half of nslaminar fr re revealed radial rns on fiber en
fr whuhmt tlnfrmhl rf nsion) toward th lamination. Examination of
. L I ) . th
and compressive fracture features, typical of compressive failures
KEYWORDS: Scallops Hackles Delamination

Translaminar
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MATERIALS CHARACTERIZATION
DATA INPUT SHEET

e

OPERATOR: G. White/GE DATE: _October 14, 1988
PART NAME/NUMBER: _Helio H-800 Main Landing Gear Strut

MATERIALS/SPECIFICATIONS: E-Glass/Epoxy Composite

SPECIFICATION REQUIREMENTS:
CURE TEMP:
FIBER/RESIN DENSITIES:
VERIFICATION DATA:

e Tg DETERMINATION-
INSTRUMENTATION: _TMA, DSC

RESULTS: 133°C, 135°C

®  RESIN CHARACTERIZATION-
INSTRUMENTATION:

RESULTS:

®  RESIN CONTENT-
INSTRUMENTATION:

RESULTS:

®  SPECIALIZED ANALYSES METHODS USED (HPLC, GPC, DSC, SURF. ANALYSIS, ETC)):

RESULTS:

KEYWORDS:
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MATERIALS CHARACTERIZATION
DATA INPUT SHEET
(FIGURE ATTACHMENT)

Samples Gloes fiber/Epoxy Lominata DSC Files E:B810030SC. 02

Sizes  19.4300 mg Operators SLC
Mathock 20°C/min. DSC Run Dates 07/21/88 1548

Cw CB #2, BS = 3,00, argon @ 70 co/min.. opan pan.

0. 00
-0. 02
I
g
B -0. 04
-
'S
-0, 08
-0, 08
-0. 10 —_ - .
S0 100 150 200 250
Temperature (°0 General V2.2A DuPont 9900

COMMENTS: Glass transition temperature was measured as 135°C by DSC.
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